| 基于多粒度级联森林优化算法的网络入侵检测模型研究 | |
| 所屬分類:技术论文 | |
| 上傳者:wwei | |
| 文檔大小:1476 K | |
| 標(biāo)簽: Fisher Score 随机森林 级联森林 | |
| 所需積分:0分積分不夠怎么辦? | |
| 文檔介紹:针对大规模网络入侵方式层出不穷,为应对多形态下的网络安全威胁,提出一种基于多粒度级联森林优化算法的网络入侵检测模型。首先对原始数据进行预处理,然后融合Fisher Score算法对不同特征信息进行权重选择排序,最后将其排序后的特征信息送入级联森林的卷积层和森林层,对特征信息进行深度表达和分类,从而得到精准的分类结果。经KDD 99数据集进行验证,在不同测试集占比为90%、70%和30%三组实验情况下,分别实现了98.20%、99.00%、99.27%的分类精度。实验结果证明,所提算法能够准确识别多种网络攻击,为现有网络入侵检测提供有效区分依据。 | |
| 現(xiàn)在下載 | |
| VIP會員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 | |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號-2