基于YOLOV5的藥品表面缺陷實(shí)時(shí)檢測(cè)方法 | |
所屬分類:技術(shù)論文 | |
上傳者:zhoubin333 | |
文檔大小:719 K | |
標(biāo)簽: 缺陷檢測(cè) 深度學(xué)習(xí) 目標(biāo)檢測(cè) | |
所需積分:0分積分不夠怎么辦? | |
文檔介紹:藥品在實(shí)際生產(chǎn)過(guò)程中總會(huì)伴隨著異物、缺粒、藥體破損等表面缺陷,這些缺陷輕則影響產(chǎn)品使用效果,重則會(huì)在使用過(guò)程中產(chǎn)生巨大事故造成生命財(cái)產(chǎn)損失。針對(duì)深度學(xué)習(xí)模型在實(shí)際工業(yè)產(chǎn)品表面缺陷檢測(cè)中缺陷樣本少以及細(xì)小缺陷檢測(cè)精度低的應(yīng)用問(wèn)題,將目前主流的目標(biāo)檢測(cè)算法之一——YOLOV5應(yīng)用于藥品檢測(cè)場(chǎng)景,提出了一種精度高、所需標(biāo)注樣本少、檢測(cè)速度快的one-stage實(shí)時(shí)缺陷檢測(cè)系統(tǒng)——RDD_YOLOV5(Real-time Defects Detection_YOLOV5)。利用原始圖像初級(jí)特征進(jìn)行數(shù)據(jù)增強(qiáng),結(jié)合注意力機(jī)制與多尺度特征融合,增加骨干網(wǎng)絡(luò)提取跨通道語(yǔ)義信息能力,充分融合高層語(yǔ)義信息與底層細(xì)粒度信息以提升模型在小缺陷檢測(cè)方面的識(shí)別效果,在有限的樣本條件下達(dá)到較高的準(zhǔn)確率。該方法檢測(cè)效果達(dá)到了96.6%mAP,32 FPS。 | |
現(xiàn)在下載 | |
VIP會(huì)員,AET專家下載不扣分;重復(fù)下載不扣分,本人上傳資源不扣分。 |
Copyright ? 2005-2024 華北計(jì)算機(jī)系統(tǒng)工程研究所版權(quán)所有 京ICP備10017138號(hào)-2