一種利用類別顯著性映射生成對抗樣本的方法
所屬分類:技術論文
上傳者:zhoubin333
文檔大小:527 K
標簽: 深度學習 安全 對抗樣本
所需積分:0分積分不夠怎么辦?
文檔介紹:如果對抗樣本的遷移性越強,則其攻擊結構未知的深度神經網絡模型的效果越好,所以設計對抗樣本生成方法的一個關鍵在于提升對抗樣本的遷移性。然而現有方法所生成的對抗樣本,與模型的結構和參數高度耦合,從而難以對結構未知的模型進行有效攻擊。類別顯著性映射能夠提取出樣本的關鍵特征信息,而且在不同網絡模型中有較高的相似度?;陲@著性映射的這一特點,在樣本生成過程中,引入類別顯著性映射進行約束,實驗結果表明,該方法生成的對抗樣本具有較好的遷移性。
現在下載
VIP會員,AET專家下載不扣分;重復下載不扣分,本人上傳資源不扣分。