?
高速匯流排提高電源設(shè)計難度
???? 隨著許多高速處理器、大容量硬碟和磁碟陣列、顯示卡、乙太網(wǎng)路和光纖資料通信、以及存儲器陣列等設(shè)備的通信速度不斷加快,使用更快速的匯流排介面來符合其應(yīng)用需求成為必要。
?????? 現(xiàn)代半導(dǎo)體技術(shù)能制造出比以前更快的邏輯電路,但僅靠提高邏輯電路速度并不足以加快匯流排速度。匯流排架構(gòu)工程師必須處理匯流排電容、因為信號線長度不同所造成的信號歪斜現(xiàn)象、難以預(yù)測的匯流排負(fù)載變化、以及系統(tǒng)零組件的誤差。匯流排速度越快,電壓就必須越精確。而這些問題都與俗稱為I/O電源或VIO.的匯流排收發(fā)器電源供應(yīng)習(xí)習(xí)相關(guān),因此現(xiàn)代匯流排必須小心設(shè)計其電源才能有效發(fā)揮最大效能。
新舊PCI可相容
???????? 回溯相容性是PCI匯流排的最大優(yōu)勢。PCI特別工作小組已發(fā)展出一套方法讓PCI擴(kuò)充槽能同時支援新型與舊規(guī)格的PCI電路板。早期的PCI電路板和PCI-X" title="PCI-X">PCI-X 1.0(又稱為mode-1)電路板都使用3.3V VIO,而PCI-X 2.0 266MHz和533MHz(又稱為mode-2)電路板使用的則是1.5V VIO電壓。誤用3.3V電源的mode-2電路板會發(fā)生故障;而誤用1.5V電源的舊規(guī)格或mode-1電路板,則可能會沒有足夠的電壓在匯流排產(chǎn)生邏輯 “1” 信號。
?????? 原始的PCI標(biāo)準(zhǔn)是以不同的接腳邊緣外形讓5V和3.3V電路板共存,但這種做法無法提供回溯相容性。PCI-X 2.0則是借用現(xiàn)代高效能微處理器技術(shù),也就是透過邏輯電路來選擇電壓(logic-selectable voltage)來解決此問題。
??????? PCI電路板連接座上有個稱為PCIXCAP的PCI-X相容性接腳,PCI系統(tǒng)會利用系統(tǒng)電路板上的模擬數(shù)字轉(zhuǎn)換器測量PCIXCAP的電壓值以決定PCI電路板速度。傳統(tǒng)PCI電路板會將PCIXCAP接地,使擴(kuò)充槽控制器將匯流排速度限制在33MHz。PCI-X 66MHz電路板會在PCIXCAP接腳加上10kΩ下拉電阻,讓PCI-X以66MHz速度操作;PCI-X 133MHz電路板則會讓PCIXCAP處于浮動狀態(tài),以啟動133MHz操作模式。
??????? 這種技術(shù)還能根據(jù)PCIXCAP共用接腳電壓來設(shè)定整個匯流排。比方說,只要有一張PCI電路板將PCIXCAP接地,整個匯流排就會使用33MHz;PCIXCAP接腳若處于浮動高電位,就表示所有PCI電路板皆為PCI-X 133MHz,使匯流排進(jìn)入133MHz操作模式。若有部份電路板在PCIXCAP加上10kΩ下拉電阻,PCIXCAP接腳電壓就會低于浮動狀態(tài)的高電壓,但仍高于接地電壓,此時匯流排會在PCI-X 66MHz速率下操作。
??????? PCI-X 2.0定義兩種新的下拉電阻值:PCI-X 266MHz的3.16kΩ以及PCI-X 533MHz的1.02kΩ,來進(jìn)一步擴(kuò)大此技術(shù),使操作速度增加為五種。系統(tǒng)可以根據(jù)PCIXCAP模擬數(shù)字轉(zhuǎn)換器所提供的資訊來設(shè)定匯流排速度與VIO電壓。
??????? 工程師還需解決許多其他問題才能完成64位元266MHz擴(kuò)充槽實作。橋接" title="橋接">橋接技術(shù)速度雖然已能讓一個橋接器" title="橋接器">橋接器支援6個32位元的66MHz PCI擴(kuò)充槽,但目前仍只能處理2個64位元的133MHz PCI-X 1.0匯流排擴(kuò)充槽;266MHz以上的PCI匯流排更要將橋接器直接連線至擴(kuò)充槽,才能滿足兩者之間的超高資料速率要求。
PCI VIO規(guī)格
??????? 使用3.3V或5V I/O電源和較慢的資料速率時,就算電源供應(yīng)電壓略有變動,PCI系統(tǒng)所輸出的低電位和高電位電壓仍能達(dá)到TTL規(guī)格要求。但如果VIO降到1.5V,資料速率又增加至266MHz以上,信號振幅范圍將大幅縮小,信號穩(wěn)定時間則相對變得更重要。
??????? PCI規(guī)格對于不同的VIO電壓要求如下:
?????? PCI-X mode 1要求擴(kuò)充槽和橋接器的3.3V VIO電壓相差不能超過±100mV;這就表示橋接晶片的VIO電壓必須在擴(kuò)充槽VIO電壓的100mV范圍內(nèi),以便忍受電流感測" title="電流感測">電流感測電阻、獨(dú)立的電源切換FET開關(guān)電晶體、和信號線的可能電壓降。但若VIO電壓為1.5V,擴(kuò)充槽與橋接器的電壓就不能相差超過±15mV;此時唯有讓它們使用同一組電源,并以又短又粗的導(dǎo)線將其電源接點(diǎn)連接在一起,才能確保擴(kuò)充槽與橋接器的電壓相差在要求范圍內(nèi)。
??????? 針對VIO電壓的要求也帶來了許多新限制。舉例來說,橋接晶片必須能開啟和關(guān)閉VIO電壓,以及選擇電壓值在3.3V與1.5V之間。電源供應(yīng)選擇開關(guān)在提供電源給擴(kuò)充槽負(fù)載(最高1.5A)和橋接晶片負(fù)載時(最高1.5A以上,視橋接晶片而定),其電壓降不能超過±75mV。
VIO電源實作
??????? 有些系統(tǒng)會用它的1.5V電源層,提供VIO電壓給mode-2橋接器和PCI-X擴(kuò)充槽。這些系統(tǒng)只要遵守下列簡單規(guī)則,就能使用切換電路來提供VIO電壓:
?????? 1. 以寬而短的線路將VIO電壓傳送給橋接器和擴(kuò)充槽;?
?????? 2. 略為提高1.5V電源層的電壓;
?????? 3. 使用導(dǎo)通阻抗極低的功率FET電晶體和電流感測元件;
?????? 4. 在「阻隔串接線路」(blocking series connection)上,利用兩顆FET開關(guān)電晶體將1.5V電源送到橋接器和擴(kuò)充槽;如此一來,無論擴(kuò)充槽電壓為0V或3.3V,只要FET處于截止?fàn)顟B(tài),就不會有電流從擴(kuò)充槽通過FET的體二極管進(jìn)入1.5V電源層。
???????? 除了采用上述的切換電路之外,也能以1.8V電源供應(yīng)器來提供VIO電壓給mode-2擴(kuò)充槽和橋接晶片,然后再利用低壓降線性穩(wěn)壓器將1.8V降壓至1.5V電壓。這種做法可使用成本較低的FET電晶體,而對于電路板繞線要求也比較寬。比方說,設(shè)計人員可以使用UC382-1之類的低壓降穩(wěn)壓元件,或圖1所示的TPS2342熱插拔" title="熱插拔">熱插拔電源控制器;此時功率FET將同時扮演電源選擇器、穩(wěn)壓器、和熱插拔電源開關(guān)等多種角色。
????? 圖1:采用TPS2342 PCI-X 2.0熱插拔控制器的1.8V和3.3V VIO電壓選擇電路。它會在匯流排處于mode-2模式時,透過放大器驅(qū)動Q2和Q3,使+1.8V電壓降為1.5V
???????
??? 擴(kuò)充槽VIO接腳與元件15VIS接腳之間的連線極為重要;由于它同時擔(dān)任著電流感測和穩(wěn)壓感測等功能,所以在繞線時需特別注意。?
????若系統(tǒng)無法提供低電壓電源,也能利用可程式交換式穩(wěn)壓器來提供VIO電壓;例如使用可接受+12V輸入電源的PTH05000 VRM穩(wěn)壓模組提供3.3V或1.5V電壓,或是採用內(nèi)建FET電晶體的TPS54310 SWIFT等交換式穩(wěn)壓元件。
?
??????? PCI和PCI-X可廣泛用于各種平臺、筆記型電腦、桌上型電腦、伺服器和工業(yè)系統(tǒng)。筆記型電腦和桌上型電腦大都以PCI做為內(nèi)部資料匯流排;外部裝置連線則采用USB、Firewire、PCMCIA、Cardbus或是Express Card。這些裝置都有自己的電源管理和裝置熱抽換(Hot Swap)協(xié)定。?
?????????PCI和PCI-X也能在系統(tǒng)不關(guān)機(jī)時移除連接裝置;這種熱插拔(hot plug)功能是伺服器等高可用性(high-availability)系統(tǒng),在不中斷作業(yè)條件下進(jìn)行維修服務(wù)的關(guān)鍵。設(shè)計人員必須利用系統(tǒng)驅(qū)動程式和硬件才能提供完整的PCI熱插拔功能。
???????? PCI熱插拔擴(kuò)充槽的插座與傳統(tǒng)PCI擴(kuò)充槽完全相同;它上面也有電路板內(nèi)鎖開關(guān)、電路板服務(wù)要求按鈕、以及標(biāo)準(zhǔn)的電路板狀態(tài)指示燈。電路板的管理與控制是由標(biāo)準(zhǔn)熱插拔控制器(Standard Hot Plug Controller,SHPC)負(fù)責(zé);它會監(jiān)測擴(kuò)充槽開關(guān)、命令擴(kuò)充槽啟動或關(guān)閉電源、啟動或關(guān)閉匯流排開關(guān)、將資料繞過已關(guān)閉電源的擴(kuò)充槽、以及管理擴(kuò)充槽指示燈的燈號狀態(tài)。另一顆稱為熱插拔電源控制器(Hot Plug Power Controller,HPPC)的功率模擬元件則會負(fù)責(zé)切換擴(kuò)充槽電源。
???????? HPPC可提供不同的電源和模擬功能;例如擴(kuò)充槽開關(guān)的電壓跳動消除(debouncing)和緩沖、電路板種類判斷、選擇適當(dāng)?shù)臄U(kuò)充槽VIO電壓、切換擴(kuò)充槽的+12V、+5V、+3.3V、Vaux和-12V電源、驅(qū)動擴(kuò)充槽匯流排開關(guān)、以及驅(qū)動擴(kuò)充槽指示燈。HPPC還可為每個匯流排電源提供限流功能,以防止故障電路板造成背板電源過載或電壓下降。
???????? TPS2363熱插拔電源控制器可為PCI Express提供熱插拔功能。這顆元件可以切換兩個擴(kuò)充槽的Vaux、+3.3V和+12V主電源、監(jiān)測兩個擴(kuò)充槽的內(nèi)鎖和服務(wù)要求開關(guān);它還能在任何電源發(fā)生過載時,立即切斷擴(kuò)充槽連線以保護(hù)電源不受損害。
面對實際問題
??????? 現(xiàn)代邏輯元件已能承受來自電源的大電流突波,開關(guān)速度更達(dá)到500ps以內(nèi)。實際限流電路必須在必要時提供瞬間大電流,擴(kuò)充槽電流達(dá)到危險水準(zhǔn)一段時間后,也要能迅速切斷擴(kuò)充槽電源;否則激增的擴(kuò)充槽電流可能導(dǎo)致背板電壓下降,進(jìn)而影響背板其它裝置的正常作業(yè)。
??????? 電流感測零件和導(dǎo)線的布局也很重要。圖2是電流感測電阻與HPPM之間的較佳連接方式。
?????? 圖2:以Kelvin連線方式將電流感測電阻連接至電流感測電路,以避免大電流通過電路板線路時產(chǎn)生過多電壓降。圖中顯示兩種取代Kelvin連線的較佳方式。電路板的電流感測線路必須是間距極小的等長平行路徑,以避免鄰近大電流線路而產(chǎn)生磁耦合。為防止出現(xiàn)假的電流故障,設(shè)計人員應(yīng)選擇串聯(lián)電感很小的電流感測電阻;這表示應(yīng)避免使用含有鈷、鎳或鐵的電阻。元件的3VS和3VIS接腳之間應(yīng)連接一顆陶瓷電容,它能在假的電流故障出現(xiàn)時協(xié)助消除噪音。
??????? 針對高密度的電路板零件布局,工程師應(yīng)選擇能直接放在PCI插座之間的高密度單列式功率封裝(inline power package)。舉例來說,TPS2343就采用80只接腳的TVSOP封裝,其接腳末端寬度不到8.5釐米。
未來展望
??????? 串列匯流排已開始出現(xiàn)在現(xiàn)代電子系統(tǒng),并與傳統(tǒng)并列匯流排分庭抗禮;這兩種匯流排在短期內(nèi)仍須攜手共存。串列匯流排沒有資料路徑歪斜的問題,故能采用更彈性的繞線和連接座設(shè)計。接腳數(shù)目的減少使串列匯流排體積更為精巧;然而電源路徑安排以及電源安全保護(hù)對于串列匯流排仍然極為重要。
??????? 半導(dǎo)體技術(shù)雖可將更多功能整合至更低成本元件,連接座和其它機(jī)械零件卻日益昂貴?,F(xiàn)在正是串列匯流排取代并列匯流排的轉(zhuǎn)折點(diǎn)。雖然PCI Express成本已降至PCI-X的水準(zhǔn),未來還會更低;但是PCI、PCI-X 1.0和PCI-X 2.0仍擁有低成本、回溯相容性、和易于實作等優(yōu)勢,這也意味著它們?nèi)詫⒃谑袌錾巷L(fēng)光一段時間。