《電子技術應用》
您所在的位置:首頁 > 通信與網(wǎng)絡 > 設計應用 > 基于CH375的智能數(shù)據(jù)采集卡設計方案
基于CH375的智能數(shù)據(jù)采集卡設計方案
摘要: 由于采用了支持海量存儲技術的多模式USB總線控制芯片CH375 和高速低功耗的ARM7控制器,使得該數(shù)據(jù)采集卡具有一定的智能采集能力,擺脫上位機連接限制而獨立工作,采集到的數(shù)據(jù)存儲到U盤中。符合新型數(shù)據(jù)采集系統(tǒng)小型化、移動化、智能化的發(fā)展趨勢,廣泛適用于工業(yè)現(xiàn)場和戶外作業(yè)等應用場合,有很高的實用價值和推廣意義。
Abstract:
Key words :

 引言

  數(shù)據(jù)采集是現(xiàn)代電子系統(tǒng)中不可缺少的重要組成部分,在測量、制造、自動控制等場合都需要高質量的信號采集環(huán)節(jié),由于ADC技術和微控制器技術的相對成熟,基于PCI,ISA等接口的數(shù)據(jù)采集卡被廣泛地應用在眾多科研和工控領域。在測試技術日益變革的今天,測試任務更加復雜多變,需要采集和處理的信息量更加冗長,同時要求測試環(huán)節(jié)與計算機的接口更加無縫化和標準化,基于虛擬儀器技術 (Virtual Instruments)和高速USB 2.0接口的數(shù)據(jù)采集有著更為廣泛的應用前景和市場,是當前測試技術研究的熱點之一。

  以運算速度更快,位數(shù)更寬,資源更為豐富的ARM處理器作為控制核心,配合USB 2.0數(shù)據(jù)傳輸和靈活的上位機軟件,新一代的數(shù)據(jù)采集卡已經(jīng)不再局限于單一的板卡形式,可以通過連接線獨立于計算機之外,根據(jù)測試任務的需求,滿足高精度、高速率、多功能的測試指標。同時由于采用了高性能的ARM處理器,控制程序容量加大,方便實現(xiàn)數(shù)據(jù)采集的獨立化、智能化、多樣化,擺脫數(shù)據(jù)采集系統(tǒng)對上位機運算能力的依賴,從而開發(fā)出全新的智能數(shù)據(jù)采集卡。

  1 系統(tǒng)原理及框圖

  整個系統(tǒng)的組成框圖如圖1所示。被測電壓信號經(jīng)過前置調理送到AD7685進行采樣,由 Atmega48的SPI驅動AD7685,采集到的雙字節(jié)(16 b)數(shù)據(jù)由Atmega48并口,分兩次傳送給ARM ADuC7026核心。當數(shù)據(jù)采集卡工作于聯(lián)機狀態(tài)時,由PC上位機軟件設置采樣頻率和通道工作模式,經(jīng)過處理通過USB控制芯片CH375送數(shù)據(jù)到PC端;當數(shù)據(jù)采集卡工作于離線模式時,無需PC上位機干預,數(shù)據(jù)采集卡按照預先設定的采樣頻率和工作模式進行采樣。并將采樣數(shù)據(jù)通過USB控制芯片CH375送數(shù)據(jù)到U盤端。系統(tǒng)采用±9 V,+5 V,+3.3 V以及模擬地數(shù)字地,并由DC/DC模塊產生,經(jīng)過良好的LC濾波為各個電路單元提供電力。人機接口(HMI)采用簡潔的雙按鍵和LED指示,對整個數(shù)據(jù)采集卡工作模式的選擇和運行狀態(tài)進行控制。

   2 數(shù)據(jù)采集卡的硬件實現(xiàn)

  2.1 ADC接口和信號調理電路

  為了滿足較高的采集精度和采樣速率,該設計選擇AD7685作為模擬/數(shù)字轉換器件。AD7685是一款16位、串行輸出、250 KSPS、電荷再分配、逐次逼近型 (PulSAR)ADC。ADC與處理器采用串行外圍設備接口(SPI)接口進行連接,為了保證ADC的精度,采用高速光耦6N137隔離式驅動電路來隔離處理器SPI總線上的串擾。

  前置調理電路信號的流向參見圖1系統(tǒng)組成框圖。設計中,采用模擬開關ADG1024對輸入信號進行切換,并通過可編程增益放大器(PGA)AD8251進行處理,通過增益為0.2的電平轉換16位ADC驅動器AD8275,把±5 V的信號轉換成 0.25~2.25 V的信號,極大地擴展了該數(shù)據(jù)采集卡的測量范圍,而簡化了前置調理電路的設計,其電壓計算公式如下:

  經(jīng)過前置調理電路使得不同量程范圍的輸入信號放大或衰減到0.25~2.5 V內,最大限度地利用ADC量程,使得采集系統(tǒng)的4個輸入通道可以有單通道、雙通道、四通道3種工作模式,且每個通道皆可以設置為任意量程。前置通道的相應配置由處理器ADuC7026完成,其配置遵循表1。

  2.2 EMC措施

  該設計采用外置9 V開關型穩(wěn)壓電源或USB端口供電,由于開關電源的低成本和高功率密度,普遍被現(xiàn)代電子系統(tǒng)設計所采用,但其帶來的電磁干擾(EMI)問題也不容忽視。同時,ARM7主頻高達45 MHz,必須考慮其EMI問題。該設計盡量選取低噪聲的放大器和ADC,遵循最短路徑的布線原則,確保前置通道具有較低的噪聲水平。設計中,采用數(shù)字地/模擬地分區(qū)覆銅,并一點接地的布線方式,避免電源和數(shù)字部分對模擬地電位產生浮動和干擾。同時,采集卡外殼貼裝鋁箔紙,以防止外界電磁輻射影響內部電路的工作。

  2.3 USB接口

  該設計使用USB控制芯片CH375,內置海量存儲固件,既可以作為USB設備方式向PC上位機傳送數(shù)據(jù),又可以作為USB主機,將數(shù)據(jù)存入U盤中。該芯片支持USB 2.0通信協(xié)議,在并口工作模式下能同時支持主機方式和設備方式。為了保證USB高速傳輸數(shù)據(jù)的穩(wěn)定性和完整性,采取如下措施:

  (1)采用USB屏蔽線作為連接線,保證數(shù)據(jù)傳輸不受外界電磁干擾。

  (2)保證計算機USB端口的地線與USB控制芯片 CH375的地線嚴格等電位。

  2.4 ARM系統(tǒng)的構建

  ADuC7026是基于ARM7TDMI內核的精密控制器,具有62 KB FLASH,8 KB RAM和4個通用定時器,內部集成UART,I2C,SPI,DAC,PWM,JTAG端口、PLA等眾多硬件資源,40個通用I/O引腳。CPU時鐘高達45 MHz,采用80腳LQFP封裝。在該設計中,搭建了一個包括供電電路、時鐘電路、復位電路、 JTAG程序下載調試接口等電路的完整ARM7應用系統(tǒng)。實際上由于實測ADuC7026的外部I/O取反速度只有4 MHz,因此在SPI設計中,該設計加入Atmega48單片機作為中轉,保證了控制核心在處理USB通信、U盤讀/寫等大量信息時對采樣的準確觸發(fā)。

  3 程序設計

  3.1 ARM端程序編寫

  ARM下位機軟件完成的主要功能有3個進程,分別為 Wait,Online,Offline。當數(shù)據(jù)采集卡上電復位后,首先執(zhí)行Wait進程,該進程等待按鍵操作,更改系統(tǒng)工作模式,配合的子程序還有相應初始化程序、按鍵防抖程序等。當Wait進程結束時,系統(tǒng)轉入聯(lián)機模式(Online)或離線模式(Offline)。聯(lián)機模式按照用戶設置進行采樣,將數(shù)據(jù)存入CH375緩沖,CH375負責將數(shù)據(jù)傳送給上位PC機,其程序流程如圖2所示。離線模式則利用CH375海量存儲固件,將數(shù)據(jù)存入U盤。為保證采集的實時性,控制器將數(shù)據(jù)存放在U盤扇區(qū)中,而不是以文件的形式讀/寫,避免創(chuàng)建文件時復雜時序的延誤,其程序流程圖如圖3所示。

  3.2 PC端編程

  該數(shù)據(jù)采集卡的上位機應用程序由動態(tài)鏈接庫DLL和客戶端程序2個部分組成。其中,DLL負責與內核態(tài)的 USB功能驅動程序通信,并接收應用程序的各種操作請求;客戶端程序負責對數(shù)據(jù)進行分析處理。采用VC++編寫,遵循了工程通用的輸入/輸出界面,可以完成普通數(shù)據(jù)采集卡的在線采集功能,同時也可以將數(shù)據(jù)采集卡存儲在U盤中的采集數(shù)據(jù),通過物理扇區(qū)尋址來讀取相應的采集數(shù)據(jù)。

  4 測試與結論

  通過該數(shù)據(jù)采集卡掛載U盤,對5 kHz正弦單通道信號進行采集,將U盤數(shù)據(jù)導入上位機,以獲得如圖 4所示的波形,它良好地復現(xiàn)了現(xiàn)場波形信號。

  5 結 語

  由于采用了支持海量存儲技術的多模式USB總線控制芯片CH375和高速低功耗的ARM7控制器,使得該數(shù)據(jù)采集卡具有一定的智能采集能力,擺脫上位機連接限制而獨立工作,采集到的數(shù)據(jù)存儲到U盤中。符合新型數(shù)據(jù)采集系統(tǒng)小型化、移動化、智能化的發(fā)展趨勢,廣泛適用于工業(yè)現(xiàn)場和戶外作業(yè)等應用場合,有很高的實用價值和推廣意義。

此內容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉載。