《電子技術應用》
您所在的位置:首頁 > 電源技術 > 設計應用 > 開關電源阻尼輸入濾波器
開關電源阻尼輸入濾波器
摘要: 開關式電壓調節(jié)器通常優(yōu)于線性調節(jié)器,因為它們更高效,而開關拓撲結構則十分依賴輸入濾波器。這種電路元件與電源的典型負動態(tài)阻抗相結合,可以誘發(fā)振蕩問題。本文將闡述如何避免此類問題的出現。
Abstract:
Key words :

開關式電壓調節(jié)器通常優(yōu)于線性調節(jié)器,因為它們更高效,而開關拓撲結構則十分依賴輸入濾波器" title="濾波器">濾波器" target="_blank">濾波器。這種電路元件與電源的典型負動態(tài)阻抗相結合,可以誘發(fā)振蕩問題。本文將闡述如何避免此類問題的出現。

  一般而言,所有的電源都在一個給定輸入范圍保持其效率。因此,輸入功率或多或少地與輸入電壓水平保持恒定。圖1顯示的是一個開關電源" title="開關電源">開關電源的特征。隨著電壓的下降,電流不斷上升。 

  負輸入阻抗

  電壓-電流線呈現出一定的斜率,其從本質上定義了電源的動態(tài)阻抗。這根線的斜率等于負輸入電壓除以輸入電流。也就是說,由 Pin = V·I,可以得出 V="Pin/I";并由此可得 dV/dI=–Pin/I2 或 dV/dI≈–V/I。

  該近似值有些過于簡單,因為控制環(huán)路影響了輸入阻抗的頻率響應。但是很多時候,當涉及電流模式控制時這種簡單近似值就已足夠了。
 

圖1 開關電源表現出的負阻抗


  為什么需要輸入濾波器

  開關調節(jié)器輸入電流為非連續(xù)電流,并且在輸入電流得不到濾波的情況下其會中斷系統(tǒng)的運行。大多數電源系統(tǒng)都集成了一個如圖 2 所示類型的濾波器。電容為功率級的開關電流提供了一個低阻抗,而電感則為電容上的紋波電壓提供了一個高阻抗。該濾波器的高阻抗使流入源極的開關電流最小化。在低頻率時,該濾波器的源極阻抗等于電感阻抗。在您升高頻率的同時,電感阻抗也隨之增加。在極高頻率時,輸出電容分流阻抗。在中間頻率時,電感和電容實質上就形成了一種并聯諧振電路,從而使電源阻抗變高,呈現出較高的電阻。
 

圖2 諧振時濾波器的高阻抗和高阻性 


  大多數情況下,峰值電源阻抗可以通過首先確定濾波器 (Zo) 的特性阻抗來估算得出,而濾波器特性阻抗等于電感除以電容所得值的平方根。這就是諧振下電感或者電容的阻抗。接下來,對電容的等效串聯電阻 (ESR) 和電感的電阻求和。這樣便得到電路的 Q 值。峰值電源阻抗大約等于Zo乘以電路的Q值。

  振蕩

  但是,開關的諧振濾波器與電源負阻抗耦合后會出現問題。圖3顯示的是在一個電壓驅動串聯電路中值相等、極性相反的兩個電阻。這種情況下,輸出電壓趨向于無窮大。當您獲得由諧振輸入濾波器等效電阻所提供電源的負電阻時,您也就會面臨一個類似的電源系統(tǒng)情況;這時,電路往往就會出現振蕩。
 

 

 圖3 與其負阻抗耦合的開關諧振濾波器可引起不必要的振蕩


  設計穩(wěn)定電源系統(tǒng)的秘訣是保證系統(tǒng)電源阻抗始終大大小于電源的輸入阻抗。我們需要在最小輸入電壓和最大負載(即最低輸入阻抗)狀態(tài)下達到這一目標。

  在前面,我們討論了輸入濾波器的源極阻抗如何變得具有電阻性,以及其如何同開關調節(jié)器的負輸入阻抗相互作用。在極端情況下,這些阻抗振幅可以相等,但是其符號相反從而構成了一個振蕩器。業(yè)界通用的標準是輸入濾波器的源極阻抗應至少比開關調節(jié)器的輸入阻抗低 6dB,作為最小化振蕩概率的安全裕度。

  輸入濾波器設計通常以根據紋波電流額定值或保持要求選擇輸入電容(圖4所示 CO)開始的。第二步通常包括根據系統(tǒng)的 EMI 要求選擇電感 (LO)。正如我們上個月討論的那樣,在諧振附近,這兩個組件的源極阻抗會非常高,從而導致系統(tǒng)不穩(wěn)定。圖4描述了一種控制這種阻抗的方法,其將串聯電阻 (RD) 和電容 (CD) 與輸入濾波器并聯放置。利用一個跨接 CO 的電阻,可以阻尼濾波器。但是,在大多數情況下,這樣做會導致功率損耗過高。另一種方法是在濾波器電感的兩端添加一個串聯連接的電感和電阻。
 

 

圖4 CD 和 RD 阻尼輸出濾波器源極阻抗 


  選擇阻尼電阻

  有趣的是,一旦選擇了四個其他電路組件,那么就會有一個阻尼電阻的最佳選擇。圖5顯示的是不同阻尼電阻情況下這類濾波器的輸出阻抗。紅色曲線表示過大的阻尼電阻。請思考一下極端的情況,如果阻尼電阻器開啟,那么峰值可能會非常的高,且僅由 CO 和 LO 來設定。藍色曲線表示阻尼電阻過低。如果電阻被短路,則諧振可由兩個電容和電感的并聯組合共同設置。綠色曲線代表最佳阻尼值。利用一些包含閉型解的計算方法(見參考文獻 1)就可以很輕松地得到該值。
 

 

圖5 在給定 CD-CO 比的情況下,有一個最佳阻尼電阻 


  選擇組件

  在選擇阻尼組件時,圖6非常有用。該圖是通過使用 RD Middlebrook 建立的閉型解得到的。橫坐標為阻尼濾波器輸出阻抗與未阻尼濾波器典型阻抗 (ZO = (LO/CO)1/2) 的比??v坐標值有兩個:阻尼電容與濾波器電容 (N) 的比;以及阻尼電阻同該典型阻抗的比。利用該圖,首先根據電路要求來選擇 LO 和 CO,從而得到 ZO。隨后,將最小電源輸入阻抗除以二,得到您的最大輸入濾波器源極阻抗 (6dB)。
 

 

 圖6 選取 LO 和 CO 后,便可從最大允許源極阻抗范圍內選擇 CD 和 RD


  最小電源輸入阻抗等于 Vinmin2/Pmax。只需讀取阻尼電容與濾波器電容的比以及阻尼電阻與典型阻抗的比, 您便可以計算得到一個橫坐標值。例如,一個具有 10µH 電感和 10µH 電容的濾波器具有 Zo = (10µH/10 µF)1/2 = 1Ω的典型阻抗。如果它正對一個 12V 最小輸入的 12W 電源進行濾波,那么該電源輸入阻抗將為 Z = V2/P = 122/12 = 12Ω。這樣,最大源極阻抗應等于該值的二分之一,也即 6 Ω?,F在,在 6/1 = 6 的 X 軸上輸入該圖,那么,CD/CO = 0.1,即 1 µF,同時 RD/ZO = 3,也即 3 Ω。

 

此內容為AET網站原創(chuàng),未經授權禁止轉載。