1 引言
隨著開(kāi)關(guān)電源類的數(shù)字電路的普及和發(fā)展,電子設(shè)備輻射和泄漏的電磁波不僅嚴(yán)重干擾其他電子設(shè)備正常工作,導(dǎo)致設(shè)備功能紊亂、傳輸錯(cuò)誤、控制失靈,而且威脅著人類的健康與安全,已成為一種無(wú)形污染,并不遜色于水、空氣、噪聲等有形污染的危害。因此降低電子設(shè)備的電磁干擾(EMI)已成為世界電子行業(yè)關(guān)注的問(wèn)題。為此歐洲共同體有關(guān)EMC委員會(huì)制定有關(guān)法令于1992年1月1日開(kāi)始實(shí)施,歷時(shí)4年后于1996年1月1日最終生效。該法令指出凡不符合歐洲和國(guó)際 EMC標(biāo)準(zhǔn)規(guī)定的產(chǎn)品一律不得進(jìn)入市場(chǎng)銷售,違者重罰,同時(shí)把EMC認(rèn)證和電氣安全認(rèn)證作為一些產(chǎn)品認(rèn)證的首要條件。此舉引起世界電子市場(chǎng)巨大的震動(dòng), EMC成為影響國(guó)際貿(mào)易一個(gè)重要的指標(biāo)。為了與國(guó)際接軌,我國(guó)也相繼制定了有關(guān)EMC法規(guī)。為此我國(guó)多次召開(kāi)電磁兼容標(biāo)準(zhǔn)與論證會(huì),建議自1997年1月 1日起在市場(chǎng)上流通的電子設(shè)備必須制定、設(shè)計(jì)對(duì)無(wú)線電干擾的抑制措施,安置抑制元器件,使產(chǎn)生的電磁干擾不超過(guò)標(biāo)準(zhǔn)規(guī)定的電平。于2001年1月1日起凡進(jìn)入市場(chǎng)產(chǎn)品必須有EMC標(biāo)志。這是我國(guó)電子產(chǎn)品參與國(guó)際市場(chǎng)競(jìng)爭(zhēng)的第一步。
2 抗干擾濾波器特征
抗干擾濾波器與通常的信號(hào)濾波器之間有著概念上的區(qū)別。信號(hào)濾波器是在阻抗匹配的條件下工作,即通過(guò)濾波器要保持輸入與輸出信號(hào)振幅不變?yōu)榍疤?,將其中部分頻域作預(yù)期的處理和變換。而EMI濾波器用于抑制進(jìn)入設(shè)備與出自設(shè)備的電磁干擾,具有雙向抑制性。因此這就要求EMI濾波器的端口處與設(shè)備產(chǎn)生最大失配。這樣才能使濾波器對(duì)電磁干擾的衰減等于自身網(wǎng)絡(luò)的衰減再加上輸入和輸出端口所產(chǎn)生的反射,必須遵循如下規(guī)律,見(jiàn)表1。其中Rs為電網(wǎng)輸入阻抗,隨著電量大小而變化;RL是EMI濾波器的輸出阻抗,隨負(fù)載大小而變。
從電學(xué)角度來(lái)說(shuō)只有阻抗不匹配的條件下才能在濾波器內(nèi)產(chǎn)生最大的吸收(或損耗),用EMC俗語(yǔ)稱之為“濾波器插入損耗”。EMI濾波器主要是消除或降低傳導(dǎo)干擾。實(shí)際上傳導(dǎo)干擾又分為共模干擾和差模干擾,所謂共模干擾是指相線與地線之間干擾信號(hào)的相位相同、電位相等,而差模干擾是相線間干擾信號(hào)相位差 180°(電位相等)。因此濾波電路也分為抗共模和抗差模干擾電路,參見(jiàn)圖1。
圖中LC1LC2,Cy1Cy2構(gòu)成共模濾波電路,LC1LC2為共模濾波電感,而Ld1Ld2Cx1Cx2構(gòu)成差模電路。共模電感Lc一般數(shù)值 0.3mH~38mH,共模電容Cy,只要控制在漏電電流于<1mA條件下,選擇較大數(shù)值為準(zhǔn)。而差模電感Ld一般在幾十至幾百微亨,其電容應(yīng)選耐壓大于1.4kV的陶瓷或聚酯電容。Ld1Ld2差模電感、電容值越大,低頻效果越好。市場(chǎng)上購(gòu)買的EMI濾波器大都是對(duì)共模干擾設(shè)計(jì)的,對(duì)差模抑制效果很差。實(shí)際上開(kāi)關(guān)電源中共模與差模干擾同時(shí)存在,特別對(duì)于有源功率因數(shù)校正電路中差模干擾的強(qiáng)度很大。對(duì)于開(kāi)關(guān)電源,EMI濾波器對(duì)高頻的EMI信號(hào)抑制比低頻的EMI傳導(dǎo)消除容易得多。常常利用共模電感的差值形成的差模電感就能消除300kHz~30MHz傳導(dǎo)干擾電平。設(shè)計(jì)和選用濾波器一定要根據(jù)電路的實(shí)際需要而定。首先測(cè)出傳導(dǎo)干擾電平與所規(guī)定的EMC標(biāo)準(zhǔn)極限比較,一般0.01MHz~0.1MHz是差模干擾起主導(dǎo)作用,0.1MHz~1MHz是差模與共模干擾聯(lián)合作用,而1MHz~30MHz主要是共模干擾起作用。根據(jù)實(shí)驗(yàn)結(jié)果來(lái)判斷和選擇對(duì)超標(biāo)信號(hào)有抑制作用的濾波器或器件。當(dāng)然實(shí)際操作相當(dāng)復(fù)雜,要有相當(dāng)高的技術(shù)水平和經(jīng)驗(yàn)。
3 EMI濾波器中電感材料的選擇
降低電子設(shè)備的電磁干擾已成為電子產(chǎn)品是否有市場(chǎng)的關(guān)鍵問(wèn)題。而軟磁材料已成為EMI濾波器中不可少的元件,并起著舉足輕重的作用?,F(xiàn)在用軟磁材料制成的各種抑制EMI元器件廣泛地應(yīng)用于各種電子電路和設(shè)備之中。這是因?yàn)檐洿挪牧暇哂兴?dú)特的性能,致使其在抗電磁干擾領(lǐng)域發(fā)揮主要作用。然而,電子產(chǎn)品生產(chǎn)廠家希望能得到通用EMI濾波器對(duì)所有的電子設(shè)備都能把干擾降低到標(biāo)準(zhǔn)以下,這是不現(xiàn)實(shí)的。EMI濾波器的設(shè)計(jì)要根據(jù)該電子設(shè)備的EMC標(biāo)準(zhǔn),即需要衰減 EMI信號(hào)的頻段范圍和超標(biāo)電平高低來(lái)選擇,特別是其中的軟磁材料。因?yàn)檐洿挪牧戏N類繁多,各有自己的電磁特征。除了基本磁參數(shù)如Bsμi損耗外,還要利用它們的電特性、電阻率、頻寬、阻抗等。根據(jù)所需衰減干擾信號(hào)范圍,確定對(duì)應(yīng)的濾波電路,然后再精心挑選適合于該頻段的磁性材料,濾波電感才能達(dá)到最經(jīng)濟(jì)和最佳效果。想用一種材料滿足各種抗干擾濾波器是不能達(dá)到預(yù)期效果的,必需選用適合該頻段的磁性材料。從材料的觀點(diǎn)看,EMI濾波器的作用是阻隔不需要的信號(hào)并以發(fā)熱的形式消耗掉,而讓需要的信號(hào)無(wú)衰減或幾乎不衰減地通過(guò)。值得指出的是以發(fā)熱形式所消耗掉的能量并不是指線圈在電流作用下的焦耳熱(即 I2R)。故在繞制線圈時(shí)一定要選用足夠大線徑的銅線,盡量減少這種能量的損耗。從電學(xué)觀點(diǎn)可把濾波器中帶有磁性材料的電感在頻率較低時(shí)等效為純電感L和純電阻R的串聯(lián),其阻抗Z=R+jωL。對(duì)于平均直徑為D的圓環(huán),根據(jù)安培定律和電磁感應(yīng)定律可得到:
e=N1S·dB/dt
H=N1I/l
式中N1,I——為環(huán)形磁芯上激磁線圈匝數(shù)和電流;S——磁芯截面積;l——平均磁路長(zhǎng)度(πD)。
用相量表示為:
式中μ=μ′-jμ″
磁芯在低頻時(shí)可等效為:Z=R+jωL=E/Im
代入上式
于是可以得到:
通過(guò)上式把磁學(xué)參數(shù)與電學(xué)參數(shù)直接聯(lián)系起來(lái)。它表示磁性材料的磁性參數(shù)在電路中充當(dāng)?shù)慕巧?。?1)表述電路中的電感直接與磁材料的彈性磁導(dǎo)率μ′有關(guān),表示器件的儲(chǔ)能大小與頻率無(wú)關(guān)的純電感性。而電路中電阻R與磁性材料復(fù)數(shù)磁導(dǎo)率的虛數(shù)部分μ″有關(guān)。式(2)則既與材料的渦流損耗、磁滯損耗及剩余損耗等有關(guān),并且與頻率也有關(guān)。反映在電學(xué)上就相當(dāng)于等效電阻R。最后都轉(zhuǎn)變成器件的熱能散發(fā)到空間,而EMI濾波器中的電感能夠?yàn)V去干擾信號(hào)就是利用了磁性材料的這一特征。從另一個(gè)角度看,EMI濾波電感發(fā)熱是正常的,只要不影響電路的正常工作就行了。圖2是濾波器電感在串聯(lián)等效電路中R與頻率關(guān)系曲線。相當(dāng)于電感的插入損耗曲線。在低頻段即f〈f1時(shí),電感在電路中阻抗R小得可以不計(jì),電流風(fēng)乎無(wú)損耗的流過(guò)。在此階段電感磁世間本身耗能很少,主要是線圈發(fā)熱為主(I2R)。只有大電流工作環(huán)境下才考慮這一部分能量轉(zhuǎn)換的熱量。如在大功率晶閘管調(diào)光燈電路中的抗干擾電感,因?yàn)殡娏鞲哌_(dá)20A~50A,甚至更高,即使線繞電阻很小,但能量與電流的平方成正比,所以線圈的發(fā)熱量很大。這時(shí)只有增加銅線的線徑(單股或多股),才可使線圈溫度大幅度下降。當(dāng)頻率在f1~fc頻段時(shí),由陰抗曲線可以看出等效電阻R隨頻率提高而逐漸增大。這說(shuō)明電路電感儲(chǔ)能的功能隨頻率的升高而降低,損耗隨頻率而增加。在fc點(diǎn)附近等效電阻R迅速增加,從磁學(xué)的觀點(diǎn)看,磁性材料吸收了電路中的高頻能量轉(zhuǎn)變成材料內(nèi)部損耗,如磁疇壁的運(yùn)動(dòng)及其引起的微渦流效應(yīng)等微觀損耗。在fc點(diǎn)附近不再具有貯能作用。而fc的高低與磁性材料性能有關(guān)。一般來(lái)說(shuō)鐵氧體材料fc高,金屬磁性材料fc;較低。但對(duì)同一種材料可改變制作工藝材料的成分,人為地調(diào)節(jié)fc的高低。當(dāng)頻率超過(guò)fc以后阻抗開(kāi)始下降,而到f2時(shí)雙出現(xiàn)小的峰值,這是在高頻下寄生電容Cw引起的諧振吸收。這個(gè)峰值的頻率高低與電感分布參數(shù)有關(guān),與材料的性能關(guān)系不大。實(shí)際上EMI濾波電感的抗干擾作用就是利用磁性材料這個(gè)特征。
EMI濾波器可分為共??垢蓴_濾波器和差??垢蓴_濾波器。因此對(duì)濾波電感的磁性能要求完全不同?,F(xiàn)簡(jiǎn)述如下:
?。?)共模濾波電感材料的選擇共模電感線圈如圖1中Lc1Lc2是繞在磁環(huán)上的兩只獨(dú)立的線圈,所繞圈數(shù)相同,繞向相反。使EMI濾波器接入電路后,兩只線圈產(chǎn)生的磁通在磁芯中相互抵消,不會(huì)使磁芯飽和。由于干擾信號(hào)比較弱,所以磁芯一般工作在低磁場(chǎng)的區(qū)域,選用磁性材料要求具有較高的初始磁導(dǎo)率μ0的材料做共模濾波電感。但也不是初始磁導(dǎo)率愈高愈好,還要考慮磁性材料在電路中的電特性。為了說(shuō)明,下面選擇不同類型高μ0的軟磁材料在同樣條件下測(cè)其頻率與阻抗關(guān)系曲線,反映出電感磁芯的插入損耗變化趨勢(shì),其性能如表2及圖3所示。
曲線IV是外國(guó)專門用于抗共模干擾用的電感磁芯(Mn-Zn鐵氧體),與國(guó)產(chǎn)鐵氧體相比較,在低頻段100Hz~10000Hz,由于材料本身電阻率高,交流等效電阻小,說(shuō)明在這個(gè)頻段干擾信號(hào)損耗很小,電流中主要以感抗起主要作用,可見(jiàn)鐵氧體材料對(duì)低頻干擾信號(hào)沒(méi)有一點(diǎn)抑制作用,而超微晶和1J851材料由于材料電阻率比較低,隨頻率的增加損耗也增加,可以看出磁芯渦流損耗引起的等效電阻R比鐵氧體大得多。在10kHz~100kHz的頻段R不斷增加,對(duì)該頻段的干擾信號(hào)的抑制也不斷增強(qiáng),其中1J851和超微晶材料對(duì)干擾信號(hào)抑制衰減最大而鐵氧體則很小。這對(duì)于線性濾波器來(lái)說(shuō),工作頻率在 50Hz~60Hz或400Hz~800Hz的電源要消除或衰減頻率小于10kHz的干擾信號(hào),最好選用金屬磁性材料(或非晶超微晶)。而鐵氧體在這個(gè)頻段對(duì)干擾信號(hào)的吸收顯然沒(méi)有金屬磁性材料好。當(dāng)在頻段100kHz~1MHz附近,鐵氧體材料R急增而金屬磁性材料和超微晶仍然平穩(wěn)上升,在1MHz時(shí)進(jìn)口鐵氧體達(dá)到峰值,R最大,1J851次之。而國(guó)產(chǎn)鐵氧體居第3位超微晶其峰值則在7MHz附近,變化卻比較平緩。從曲線變化可以看出鐵氧體雖然吸收的峰值在1MHz附近,但吸收區(qū)比較狹窄,而金屬磁性材料吸收區(qū)比較寬,故不同材料對(duì)不同頻率的吸收敏感性不一樣。所以制造共模濾波器時(shí)選用的電感材料一定要根據(jù)電路要求的抑制頻段范圍來(lái)選擇電感材料,這是非常重要的。同時(shí)從表2與圖3曲線對(duì)比說(shuō)明并不是電感量越高越好,而應(yīng)考慮它的電參數(shù),更不能用增加線圈匝數(shù)來(lái)增加電感。因?yàn)檫@樣會(huì)增加高頻寄生電容。
?。?)差模濾波電感材料的選擇與共模濾波電感完全不同,因?yàn)殡姼信c負(fù)載是串聯(lián),輸入電流或輸出電流直接通過(guò)電感磁芯,其交流(直流)電流很大,當(dāng)然不能用高磁導(dǎo)率的材料。為了適應(yīng)差??垢蓴_濾波器的電感磁芯的需要,最初采用鐵氧體或金屬磁性材料開(kāi)氣隙增加退磁場(chǎng)方法,降低磁導(dǎo)率,增加磁芯抗飽和能力。但這對(duì)用于電源輸入端的交變電流抗干擾濾波顯然是很不恰當(dāng)?shù)摹2粌H在開(kāi)氣隙處有很強(qiáng)的交變漏磁場(chǎng)引起的很大輻射干擾外,還在氣隙斷口處產(chǎn)生局部的損耗而發(fā)熱,導(dǎo)致鐵氧體磁性惡化甚至消失。因?yàn)殍F氧體居里溫度為200℃,在此溫度附近μ0降低至零,此時(shí)已失去濾波作用。再者由于磁致伸縮在氣隙處產(chǎn)生新的機(jī)械噪聲,污染環(huán)境。為此人們采用新穎的復(fù)合磁粉芯。這是目前最理想的濾波電感材料,它是將金屬軟磁粉末經(jīng)絕緣包裹壓制退火而成,它相當(dāng)于把一集中的氣隙分散成微小孔穴均勻分布在磁芯中,不但材料的抗飽和強(qiáng)度增加,而且磁芯的電阻率比原來(lái)增加幾個(gè)數(shù)量級(jí)且各向同性,改變了金屬磁性材料不能在高頻下使用的缺點(diǎn)。這就是在國(guó)外所有差模濾波電感都是用磁粉芯,而不用開(kāi)口鐵氧體磁芯的原因。
這里選取各種性能的磁粉芯測(cè)量頻率-阻抗變化曲線(見(jiàn)圖4)。
圖中的變化曲線表現(xiàn)出不同磁性能的電感,其阻抗與頻率變化并不一樣。鐵粉芯SF70和55930在干擾頻率<2kHz時(shí)阻抗基本不變,表示沒(méi)有吸收作用,而SF30在小于60kHz時(shí)對(duì)信號(hào)也沒(méi)有吸收作用。在2MHz附近吸收迅速增強(qiáng),在接近10MHz時(shí)吸收最強(qiáng),而SF70在100kHz以后變化不大??梢?jiàn)不同性能的材料對(duì)干擾信號(hào)的吸收頻段也不一樣。國(guó)內(nèi)外大量使用的電子調(diào)光設(shè)備大都采用移相式晶閘管調(diào)光。在晶閘管導(dǎo)通瞬間因電流突變會(huì)產(chǎn)生大量的高頻諧波而引起的電磁干擾,不單嚴(yán)重影響音響設(shè)備、燈具、攝錄像等設(shè)備,還嚴(yán)重干擾電網(wǎng)系統(tǒng)。必須安裝抗干擾電感(美國(guó)LeeColorTran英國(guó) Lank日本龍?zhí)锷鏡DS都采用這樣方式來(lái)抑制干擾)。為方便起見(jiàn),采用分析電流上升時(shí)間tr來(lái)判斷電感磁芯的抗干擾程度。不同材料的數(shù)據(jù)如表3所示。
在調(diào)光燈的工業(yè)檢測(cè)中抑制干擾的效果可以用電子調(diào)光器開(kāi)通時(shí)的電流上升時(shí)間tr來(lái)表示。上升時(shí)間越長(zhǎng)說(shuō)明電路高次諧波成分越小,抑制效果越好。從表中不難看出國(guó)產(chǎn)ZW-1電感tr時(shí)間可高達(dá)450μs而磁導(dǎo)率只有70。開(kāi)口非晶帶磁芯雖然磁導(dǎo)率最高(μe=800),但電流上升時(shí)間太短只有100μs,而又有嚴(yán)重的機(jī)械噪聲。這說(shuō)明加電感后抗干擾能力并不是磁導(dǎo)率高的好,也不是磁導(dǎo)率低的好,而與選用的磁性材料材質(zhì)有關(guān)。為了進(jìn)一步分析,對(duì)不同材料在同樣條件下測(cè)量其干擾電壓,圖5是英國(guó)Lank,國(guó)產(chǎn)ZW-1磁粉芯和通常開(kāi)口磁芯的電源端干擾電壓與頻率曲線。
按照“電子調(diào)光設(shè)備無(wú)線電干擾允許值及測(cè)量方法”測(cè)量結(jié)果,不難看出國(guó)產(chǎn)ZW-1電感與英國(guó)Lank電感相比較,國(guó)產(chǎn)ZW-1電感抗干擾電平都在A級(jí)標(biāo)準(zhǔn)以下,而英國(guó)Lank電感在0.16MHz~3.5MHz頻段超標(biāo),而開(kāi)口硅鋼片制作的抗干擾電感在頻段0.01MHz-1.2MHz都超標(biāo)。用開(kāi)口磁芯做抗干擾電感不可能達(dá)標(biāo)。目前國(guó)內(nèi)的調(diào)光燈大多數(shù)都用鐵氧體磁環(huán)做抗干擾電感,這顯然是錯(cuò)誤的。不但沒(méi)有抑制干擾反而增加干擾,因?yàn)殍F氧體總是工作在飽和區(qū)。
圖6是程控交換機(jī)用的100A抗干擾濾波器衰減曲線。抗干擾衰減曲線I是進(jìn)口同類濾波器,其干擾電平曲線在0.01MHz~100MHz范圍內(nèi)干擾電平的衰減比較均勻平緩。曲線II用開(kāi)口鐵氧體做濾波器,當(dāng)頻率為0.4MHz~0.8MHz時(shí)的峰值說(shuō)明對(duì)該頻段的干擾信號(hào)衰減小,達(dá)不到要求。后來(lái)用美國(guó) Micrometals公司鐵粉芯代替,則在0.2MHz~0.45MHz 頻段抗干擾能力弱(如曲線III)但要比開(kāi)口鐵氧體好些,仍不理想。因?yàn)閷?duì)通訊電源最傷腦筋的是低頻干擾。后來(lái)用專門研制的磁粉芯做成的濾波器干擾電平如曲線IV,要比曲線II、III都好,甚至優(yōu)于國(guó)外同類濾波器性能。從以上的例子可以看出在研制EMI濾波器時(shí)要特別注意濾波電感選擇。不但要選用適當(dāng)?shù)拇挪?,還要選用適合于所需衰減頻段的磁性能。所以磁性材料的選取在EMI濾波器中有著舉足輕重的作用。
4 抗干擾濾波器的發(fā)展趨勢(shì)
當(dāng)前電子線路向高速數(shù)字電路轉(zhuǎn)移。高組裝密度和高運(yùn)算速度對(duì)EMC提出更高的要求。電子產(chǎn)品的微型化、多功能、移動(dòng)化的發(fā)展又促使電子產(chǎn)品在組裝方式上向表面貼裝技術(shù)轉(zhuǎn)移,又進(jìn)一步降低干擾。同時(shí)為了提高其動(dòng)態(tài)響應(yīng),降低干擾,必須力求減小供電母線的引線電感。最有效的方法是將電源直接裝在負(fù)載附近,用分散供電方式(即小功率源)而不采用集中供電的形式(大功率源),這樣大大減少引線的長(zhǎng)度有效降低輻射干擾。所以今后幾年美國(guó)將大力發(fā)展小功率 16W~25W低壓(輸出電壓最低為1.2V)DC/DC開(kāi)關(guān)電源??梢?jiàn),片式磁性器件是微型化的關(guān)鍵材料之一,它可分為線繞型片式電感、疊層型片式電感、薄膜型片式電感。為此上海鋼鐵研究所已開(kāi)始著手金屬薄膜電感和薄膜變壓器元件的研制。目前美國(guó)和日本的一些重要研究所都開(kāi)始研究薄膜電感和薄膜變壓器,并與集成元件組合制成新穎的超小型、高可靠性、高抗干擾能力的電源模塊。由此可見(jiàn)超小型電感和變壓器將是21世紀(jì)磁性元件的發(fā)展方向。