《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > 24位高精度模數(shù)轉換器ADSl258的原理及應用
24位高精度模數(shù)轉換器ADSl258的原理及應用
摘要: ADSl258是TI公司推出的一款高精度、低功耗、低噪聲的16通道(多路復用的)24位△一∑型模數(shù)轉換器(ADC),其內部集成了輸入多路復用器、模擬低通濾波器、數(shù)字濾波器等功能。內部有多種控制寄存器,用戶通過不同的配置得到不同的A/D采樣速率、采樣模式、A/D轉換精度等。適用于對性能、功耗要求高、模擬通道要求多的數(shù)據(jù)采集系統(tǒng)。
Abstract:
Key words :

  1 概述

  ADSl258是TI公司推出的一款高精度、低功耗、低噪聲的16通道(多路復用的)24位△一∑型模數(shù)轉換器(ADC),其內部集成了輸入多路復用器、模擬低通濾波器、數(shù)字濾波器等功能。內部有多種控制寄存器,用戶通過不同的配置得到不同的A/D采樣速率、采樣模式、A/D轉換精度等。適用于對性能、功耗要求高、模擬通道要求多的數(shù)據(jù)采集系統(tǒng)。

  2 ADSl258主要特點及引腳功能

  2.1 主要特點

  • △一∑ADC,24位轉換精度,定通道采樣速率為125 Ks/s(可編程),自動通道檢測通道采樣速率為23.7 Ks/s(可編程);
  • 模擬輸入多路復用器可配置成8路差分輸入或16路單極輸入。多路復用器的輸出可通過外部獲得,這就能在ADC輸入之前采用共享的信號調節(jié)通道;
  • 0.5μV/℃的失調漂移、最大0.001 0%的滿量程整數(shù)非線性誤差;
  • 工作電壓范圍為2.7~5.25 V;
  • 內部帶有針對低噪聲性能進行了專門優(yōu)化的5階正弦數(shù)字濾波器;
  • 帶有串行外設接口(SPI);
  • 與其他ADC相比,ADSl258具有精度高、轉換數(shù)率快、功耗低、工作性能好等特性,適用于設備與系統(tǒng)監(jiān)控、數(shù)據(jù)采集、醫(yī)療、航空電子、測試測量等多通道應用場合。

  2.2 引腳功能

  ADSl258采用QFN一48小型封裝,各引腳功能定義如下:

  • AINO~AINl5:模擬信號輸入端;
  • GPl00~GPl07:GPIO信號輸入/輸出端;
  • CLKSEL:時鐘信號選擇輸入端;
  • SCLK:SPI接口時鐘輸入端;
  • DIN:SPI接口數(shù)據(jù)輸入端;
  • DOUT:SPI接口數(shù)據(jù)輸出端;
  • DRDY:數(shù)據(jù)準備好輸出端;
  • START:數(shù)據(jù)開始轉換信號輸入端;
  • CS:SPI接口片選端;
  • VREFN:參考電壓輸入端(+);
  • VREFP:參考電壓輸入端(一);
  • ADCINN:模擬差分輸入端(一);
  • ADCINP:模擬差分輸入端(+);
  • MUXOUTN:多路復用器差分輸出端(一);
  • MUXOUTP:多路復用器差分輸出端(+);
  • DVDD:數(shù)字電源,2.7~5.25 V;
  • RESET:復位端。

  2.3 結構原理

  圖l為ADSl258的內部結構框圖。ADSl258主要由模擬多路開關(MUX)、可共享的信號調理通道、4階△一∑ADC、5階正弦數(shù)字濾波器、SPI接口、GPIO接口、時鐘發(fā)生器、控制器等組成。模擬信號從AINO~AINl5引腳輸入,通過多路模擬開關可將其配置成8路差動輸入或16路單極輸入,通過共用的信號調理通道,輸入到4階△一∑ADC實現(xiàn)24位A/D轉換,通過數(shù)字濾波器,最終以SPI接口的形式輸出數(shù)字信號。在使用外部可共享的信號調理通道時,根據(jù)實際情況,可關閉所使用的調理通道,只需將寄存器CONFIGO的第4位(BYPAS)置0即可關閉外部調理通道,直接在ADSl258內部實現(xiàn)連接。但是,在大多數(shù)使用條件下,為獲得更高的A/D轉換精度,建議使用外部信號調理通道。

ADSl258的內部結構框圖

  ADSl258采用4線制(時鐘信號SCLK、數(shù)據(jù)輸入DIN、數(shù)據(jù)輸出DOUT和片選)SPI通信方式,由于ADSl258無法控制SPI何時開始傳輸,而是由主機控制數(shù)據(jù)傳輸,因此ADSl258只能工作在SPI通信的從模式下,設計時可通過各種主控制器控制ADSl258片上的寄存器,并通過SPI接口讀寫這些寄存器。通過SPI接口進行通訊時,必須保持CS信號為低電平,DRDY引腳用于表明轉換是否完成,DRDY為低時,說明轉換已完成,可以直接通過通道讀取數(shù)據(jù)或通道讀數(shù)據(jù)命令從DOUT引腳上讀出轉換數(shù)據(jù)。SPI通信,可同步發(fā)送和接收數(shù)據(jù),而且數(shù)據(jù)也可利用SCLK和DIN,DOUT信號同步移動。在SCLK的下降沿,系統(tǒng)通過DIN向ADSl258發(fā)送數(shù)據(jù);而在SCLK的上升沿,系統(tǒng)則通過DOUT從ADSl258讀取數(shù)據(jù)。DlN和DOUT也通過一條雙向信號線與主控制器相連。圖2給出SPI通訊時序圖。

SPI通訊時序圖

 

  2.4 主要寄存器

  ADSl258工作過程的建立主要通過設置其獨立寄存器來實現(xiàn)的。這些寄存器包括出廠時所有需要設置的信息,如采樣模式、外部信號調理通道開關、時鐘模式的選擇、模擬輸入是單極輸入還是差分輸入等等。表l給出了ADSl258的主要寄存器。其中CONFIG0和CONFIGl為狀態(tài)寄存器,MUXSCH為多路固定通道選擇寄存器,MUXDIF為多路模擬差分輸入配置寄存器,MUXSG0和MUXSGl為模擬單極輸入通道選擇寄存器。狀態(tài)寄存器CONFIG0的最高位由制造商設定為0,不能更改。SPIRST決定了ADSl258的SPI接口復位時間,SPIRST=l時其復位時間為4 096fclk;SPIRST=O時則為256fclk。MUXMOD是掃描模式選擇位,當MUXMOD=0時采用自動掃描模式;MUXMOD=l時采用固定模式。BYPAS位用于選擇是否采用外部信號調理通道選擇位,BYPAS=0時,內部多路復用器短接而不使用外部的信號調理通道;BYPAS=l時,輸入的模擬信號通過共用的外部信號調理通道傳輸?shù)?4位△一∑ADC轉換器。CONGIGl寄存器中的DRATE[1:0]位是A/D轉換速率選擇位,在自動掃描模式下,DRATE[1:0]=ll=23.739 Ks/s;DRATE[1:O]=10=15.123 Ks/s;DRATE[l:0]=0l=6.168 Ks/s;DRATE[l:O]=Ol=6.168 Ks/s;DRATE[1:0]=00=1.83l Ks/s。

ADSl258的主要寄存器

  3 典型應用

  3.1 硬件設計

  圖3為ADSl258的單極多通道應用電路圖。該電路為多路數(shù)據(jù)采集系統(tǒng),將外部輸入的16路模擬信號通過多路模擬開關,傳輸?shù)酵獠抗灿玫男盘栒{理通道,通過信號調理通道的信號調節(jié)作用,傳輸給24位△一∑型A/D轉換器進行模數(shù)轉換,A/D轉換結束后,將轉換結果通過專門優(yōu)化的5階正弦數(shù)字濾波器進行濾波,最后才通過SPI接口傳輸給C805lF120進行處理。

ADSl258的單極多通道應用電路圖

點擊看原圖

 

 

  為了提高數(shù)據(jù)的采集精度,本采集系統(tǒng)采用MAXIM公司的具有高精度和低漂移的4.096 V電壓基準MAX6164A。同時由于輸入信號的電壓范圍為O~1 V,為了使輸入信號的范圍與電壓基準相一致,提高采集精度,在信號通過外部信號調理通道時,調整比例因子,即就是R7和R6的值,使輸入信號放大4倍,量程為0~4 V,其電壓增益AV=1+(2R7/R6),只要選擇合適的R7和R6,使AV=4即可滿足要求。同時為了提高A/D轉換精度,選用R6和R7時盡可能選擇高精度的精密電阻。

  3.2 軟件設計

  由于C805lFl20和ADSl258都擁有各自的硬件SPI接口,編程比較簡單,只要按照ADSl258的時序圖編程即可實現(xiàn)軟件設計功能,需注意以下事項:使用SPI接口時,要先對行SPI接口進行復位,可采用硬件復位或軟件復位,但是即使采用硬件電路復位,使CS信號固定在低電平時,還要進行SPI軟件接口復位,否則有可能使SPI讀寫數(shù)據(jù)不準確。

  在配置A/D轉換速率時,在滿足系統(tǒng)條件下,盡量選擇轉換速率比較低的工作模式,這樣可以提高轉換精度;

  為達到最佳性能,在電路布局時要使數(shù)字信號線與模擬信號線相隔離,可根據(jù)實際應用需要,可選擇數(shù)字電源和模擬電源工作在不同的電壓模式。

  4 結語

  ADSl258具有轉換速率快、高精度、低功耗、接口簡單等優(yōu)點,非常適合多通道高精度數(shù)據(jù)采集領域的使用。目前,基于ADSl258的數(shù)據(jù)采集處理系統(tǒng)已經(jīng)在某導航系統(tǒng)中使用,并且取得了很好效果。

此內容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉載。