《電子技術應用》
您所在的位置:首頁 > 通信與網(wǎng)絡 > 設計應用 > 基于深度學習的神經(jīng)歸一化最小和LDPC長碼譯碼
基于深度學習的神經(jīng)歸一化最小和LDPC長碼譯碼
電子技術應用
賈迪1,嚴偉1,姚賽杰2,張權2,劉亞歡2
1.北京大學 軟件與微電子學院,北京 102600;2.裕太微電子股份有限公司
摘要: LDPC碼是一種應用廣泛的高性能糾錯碼,近年來基于深度學習和神經(jīng)網(wǎng)絡的LDPC譯碼成為研究熱點。基于CCSDS標準的(512,256)LDPC碼,首先研究了傳統(tǒng)的SP、MS、NMS、OMS的譯碼算法,為神經(jīng)網(wǎng)絡的構建奠定基礎。然后研究基于數(shù)據(jù)驅動(DD)的譯碼方法,即采用大量信息及其經(jīng)編碼、調制、加噪的LDPC碼作為訓練數(shù)據(jù)在多層感知層(MLP)神經(jīng)網(wǎng)絡中進行訓練。為解決數(shù)據(jù)驅動方法誤碼率高的問題,又提出了將NMS算法映射到神經(jīng)網(wǎng)絡結構的神經(jīng)歸一化最小和(NNMS)譯碼,取得了比NMS更優(yōu)秀的誤碼性能,信道信噪比為3.5 dB時誤碼率下降85.19%。最后研究了提升NNMS網(wǎng)絡的SNR泛化能力的改進訓練方法。
中圖分類號:TN911.22 文獻標志碼:A DOI: 10.16157/j.issn.0258-7998.245766
中文引用格式: 賈迪,嚴偉,姚賽杰,等. 基于深度學習的神經(jīng)歸一化最小和LDPC長碼譯碼[J]. 電子技術應用,2024,50(12):7-12.
英文引用格式: Jia Di,Yan Wei,Yao Saijie,et al. LDPC long code decoding with neural normalized min-sum based on deep learning[J]. Application of Electronic Technique,2024,50(12):7-12.
LDPC long code decoding with neural normalized min-sum based on deep learning
Jia Di1,Yan Wei1,Yao Saijie2,Zhang Quan2,Liu Yahuan2
1.School of Software and Microelectronics, Peking University; 2.Motorcomm Co., Ltd.
Abstract: LDPC code is a widely-used high-performance error correction code. In recent years, LDPC decoding based on deep learning and neural networks becomes a research hotspot. Based on the (512,256) LDPC code of the CCSDS standard, this paper firstly studies the traditional decoding algorithms of SP, MS, NMS, and OMS, laying a foundation for the construction of neural networks. Then a data-driven (DD) decoding method is studied which adopts the information with its encoded, modulated and noise-added LDPC code as the training data within a Multi-layer Perceptron (MLP) neural network. In order to solve the problem of high bit error rate (BER) in data-driven method, the Neural Normalized Min-sum (NNMS) decoding in which the NMS algorithm is mapped to the neural network structure is proposed, achieving more excellent BER performance than that of NMS. The BER declines by 85.19% when channel SNR equals to 3.5 dB. Finally, improved training methods to enhance the SNR generalization ability of the NNMS network is studied.
Key words : LDPC;deep learning;neural networks

引言

低密度奇偶校驗碼(Low Density Parity Check, LDPC)是一種性能逼近香農(nóng)極限[1]和具有高譯碼吞吐量[2]的前向糾錯碼,被廣泛運用于有線、無線、衛(wèi)星、以太網(wǎng)等通信系統(tǒng)中。編碼后的LDPC碼被附加上冗余信息,經(jīng)調制和噪聲信道后再進行譯碼,力求盡可能地糾正其中的誤碼。傳統(tǒng)的LDPC譯碼算法包括和積譯碼(Sum Product, SP)、最小和譯碼(Min-sum, MS)、基于MS的改進算法有歸一化最小和譯碼(Normalized Min-sum, NMS)與帶偏置項的最小和譯碼(Offset Min-sum, OMS)。隨著近年來人工智能的快速發(fā)展,基于神經(jīng)網(wǎng)絡深度學習越來越廣泛地應用于各領域的研究,將深度學習方法應用于信道譯碼的研究也成為了一大研究熱點。Nachmanid等已證明對Tanner圖的邊緣分配權重,可相比傳統(tǒng)置信傳播(Belief Propogation, BP)算法減少迭代次數(shù),提高譯碼性能[3]。Wang等人提出的DNN譯碼數(shù)學復雜度高,僅適用于短碼,在長碼譯碼中展現(xiàn)性能不佳[4]。Lugosch 等提出可用于硬件實現(xiàn)的神經(jīng)偏置項最小和譯碼(Neural Offset Min-sum, NOMS)[5], 但該方法也難以應用于長碼譯碼。本文研究基于深度學習的LDPC長碼譯碼方法。首先研究數(shù)據(jù)驅動譯碼算法,即預先設置適當結構的MLP網(wǎng)絡,然后直接采用大量信息與編碼數(shù)據(jù)進行訓練,從而構建譯碼神經(jīng)網(wǎng)絡。由于沒有將傳統(tǒng)算法的迭代結構融入其中,此方法的譯碼效果不理想。而后提出神經(jīng)歸一化最小和譯碼(Neural Normalized Min-sum, NNMS),它將傳統(tǒng)的NMS算法的迭代結構改造為神經(jīng)網(wǎng)絡,再對神經(jīng)網(wǎng)絡的參數(shù)進行訓練。NNMS將傳統(tǒng)NMS算法與神經(jīng)網(wǎng)絡相結合,相比于MS和NMS算法均得到了性能的提升。


本文詳細內容請下載:

http://ihrv.cn/resource/share/2000006241


作者信息:

賈迪1,嚴偉1,姚賽杰2,張權2,劉亞歡2

(1.北京大學 軟件與微電子學院,北京 102600;

2.裕太微電子股份有限公司,上海 201210)


Magazine.Subscription.jpg

此內容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉載。