《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 设计应用 > 基于句粒度提示的大语言模型时序知识问答方法
基于句粒度提示的大语言模型时序知识问答方法
网络安全与数据治理
李志东,罗琪彬,乔思龙
华北计算技术研究所大数据研发中心,北京100083
摘要: 知识问答是自然语言处理领域的研究热点之一,而时序知识问答还需考虑知识的时序关系,更是研究难点所在。当前时序知识问答方法通常将知识和问题的词向量相似度作为回答的重要依据,忽略了知识所蕴含的句粒度语义信息。对此,提出了一种基于句粒度提示的大语言模型时序知识问答方法,首先通过对句粒度提示的改进,让大语言模型高效学习句粒度语义信息,同时验证大语言模型在Zeroshot、Fewshot及弱监督微调下时序知识问答能力。在ICEWS0515数据集上进行实验,所提方法回答正确准确率得到可观提升,体现了基于句粒度提示的大语言模型时序知识问答方法的有效性。
中圖分類號:TP391.1
文獻(xiàn)標(biāo)識碼:ADOI:10.19358/j.issn.2097-1788.2023.12.002
引用格式:李志東,羅琪彬,喬思龍.基于句粒度提示的大語言模型時序知識問答方法[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(12):7-13.
Large language model based on sentence granularity prompts for temporal knowledge Q&A approach
Li Zhidong,Luo Qibin,Qiao Silong
Big Data R&D Center, North China Institute of Computing Technology, Beijing 100083, China
Abstract: Knowledge Q&A is one of the hot research topics in the field of natural language processing, and temporal knowledge Q&A is a difficult area of Q&A reasoning because it also needs to consider the temporal relationship of knowledge. Today′s research usually focuses on the word vector similarity between knowledge and questions as an important basis for answering, while ignoring the sentence granularity semantic information embedded in the knowledge. In this paper, we propose a method of temporal knowledge Q&A for large language models based on sentence granularity prompts. Firstly, by improving the sentence granularity prompts, the large language models can learn the sentence granularity semantic information efficiently, and then the temporal knowledge Q&A ability of large language models under Zeroshot, Fewshot and weaklysupervised finetuning is verified. The experiments are conducted on the ICEWS0515 dataset , and the accuracy of answers is significantly improved, which demonstrates the effectiveness of the temporal knowledge Q&A method for large language models based on sentence granularity prompts.
Key words : temporal knowledge graph questionanswering; large language models; prompt learning;natural language processing

引言

業(yè)務(wù)系統(tǒng)中具有多種不同時間序列的數(shù)據(jù)信息,將這些數(shù)據(jù)通過相關(guān)性和因果關(guān)系相聯(lián)系形成知識圖譜有助于快速深入地掌握時序信息。此外,數(shù)據(jù)信息在時間維度上的語義表達(dá)不同,包括年、月、日等不同粒度,跨時間粒度的語義表達(dá)會對問答結(jié)果產(chǎn)生影響。由此,時序知識圖譜(Temporal Knowledge Graph,TKG)的產(chǎn)生可以對不同的時間序列數(shù)據(jù)生成一個多層的、多粒度的知識圖譜,使得時序之間的關(guān)系得以清晰描述。基于知識圖譜的問答系統(tǒng)(Question Answering System based on Knowledge Graphs, KGQA)最早被用于提高企業(yè)的核心競爭力,由于企業(yè)經(jīng)營過程中沉淀了許多知識但并不能得到很好的利用,KGQA的出現(xiàn)使得知識的完全利用成為了可能。而TKG是在傳統(tǒng)的知識圖譜上對時間進(jìn)行延伸,在三元組中加入時間維度,格式為“[頭實體 關(guān)系 尾實體 時間]”。


作者信息

李志東,羅琪彬,喬思龍

(華北計算技術(shù)研究所大數(shù)據(jù)研發(fā)中心,北京100083)


文章下載地址:http://ihrv.cn/resource/share/2000005870


weidian.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。