《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于句粒度提示的大語言模型時序知識問答方法
基于句粒度提示的大語言模型時序知識問答方法
網(wǎng)絡安全與數(shù)據(jù)治理
李志東,羅琪彬,喬思龍
華北計算技術研究所大數(shù)據(jù)研發(fā)中心,北京100083
摘要: 知識問答是自然語言處理領域的研究熱點之一,而時序知識問答還需考慮知識的時序關系,更是研究難點所在。當前時序知識問答方法通常將知識和問題的詞向量相似度作為回答的重要依據(jù),忽略了知識所蘊含的句粒度語義信息。對此,提出了一種基于句粒度提示的大語言模型時序知識問答方法,首先通過對句粒度提示的改進,讓大語言模型高效學習句粒度語義信息,同時驗證大語言模型在Zeroshot、Fewshot及弱監(jiān)督微調(diào)下時序知識問答能力。在ICEWS0515數(shù)據(jù)集上進行實驗,所提方法回答正確準確率得到可觀提升,體現(xiàn)了基于句粒度提示的大語言模型時序知識問答方法的有效性。
中圖分類號:TP391.1
文獻標識碼:ADOI:10.19358/j.issn.2097-1788.2023.12.002
引用格式:李志東,羅琪彬,喬思龍.基于句粒度提示的大語言模型時序知識問答方法[J].網(wǎng)絡安全與數(shù)據(jù)治理,2023,42(12):7-13.
Large language model based on sentence granularity prompts for temporal knowledge Q&A approach
Li Zhidong,Luo Qibin,Qiao Silong
Big Data R&D Center, North China Institute of Computing Technology, Beijing 100083, China
Abstract: Knowledge Q&A is one of the hot research topics in the field of natural language processing, and temporal knowledge Q&A is a difficult area of Q&A reasoning because it also needs to consider the temporal relationship of knowledge. Today′s research usually focuses on the word vector similarity between knowledge and questions as an important basis for answering, while ignoring the sentence granularity semantic information embedded in the knowledge. In this paper, we propose a method of temporal knowledge Q&A for large language models based on sentence granularity prompts. Firstly, by improving the sentence granularity prompts, the large language models can learn the sentence granularity semantic information efficiently, and then the temporal knowledge Q&A ability of large language models under Zeroshot, Fewshot and weaklysupervised finetuning is verified. The experiments are conducted on the ICEWS0515 dataset , and the accuracy of answers is significantly improved, which demonstrates the effectiveness of the temporal knowledge Q&A method for large language models based on sentence granularity prompts.
Key words : temporal knowledge graph questionanswering; large language models; prompt learning;natural language processing

引言

業(yè)務系統(tǒng)中具有多種不同時間序列的數(shù)據(jù)信息,將這些數(shù)據(jù)通過相關性和因果關系相聯(lián)系形成知識圖譜有助于快速深入地掌握時序信息。此外,數(shù)據(jù)信息在時間維度上的語義表達不同,包括年、月、日等不同粒度,跨時間粒度的語義表達會對問答結果產(chǎn)生影響。由此,時序知識圖譜(Temporal Knowledge Graph,TKG)的產(chǎn)生可以對不同的時間序列數(shù)據(jù)生成一個多層的、多粒度的知識圖譜,使得時序之間的關系得以清晰描述?;谥R圖譜的問答系統(tǒng)(Question Answering System based on Knowledge Graphs, KGQA)最早被用于提高企業(yè)的核心競爭力,由于企業(yè)經(jīng)營過程中沉淀了許多知識但并不能得到很好的利用,KGQA的出現(xiàn)使得知識的完全利用成為了可能。而TKG是在傳統(tǒng)的知識圖譜上對時間進行延伸,在三元組中加入時間維度,格式為“[頭實體 關系 尾實體 時間]”。


作者信息

李志東,羅琪彬,喬思龍

(華北計算技術研究所大數(shù)據(jù)研發(fā)中心,北京100083)


文章下載地址:http://ihrv.cn/resource/share/2000005870


weidian.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載。