《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 用于巡航導(dǎo)彈突防航跡規(guī)劃的改進深度強化學(xué)習(xí)算法
用于巡航導(dǎo)彈突防航跡規(guī)劃的改進深度強化學(xué)習(xí)算法
2021年電子技術(shù)應(yīng)用第8期
馬子杰,高 杰,武沛羽,謝擁軍
北京航空航天大學(xué) 電子信息工程學(xué)院,北京100191
摘要: 為了解決巡航導(dǎo)彈面臨動態(tài)預(yù)警機雷達(dá)威脅下的突防航跡規(guī)劃問題,提出一種改進深度強化學(xué)習(xí)智能航跡規(guī)劃方法。針對巡航導(dǎo)彈面對預(yù)警威脅的突防任務(wù),構(gòu)建了典型的作戰(zhàn)場景,給出了預(yù)警機雷達(dá)探測概率的預(yù)測公式,在此基礎(chǔ)上設(shè)計了一種引入動態(tài)預(yù)警威脅的獎勵函數(shù),使用深度確定性策略梯度網(wǎng)絡(luò)算法(Deep Deterministic Policy Gradient,DDPG)探究巡航導(dǎo)彈智能突防問題。針對傳統(tǒng)DDPG算法中探索噪聲時序不相關(guān)探索能力差的問題,引入了奧恩斯坦-烏倫貝克噪聲,提高了算法的訓(xùn)練效率。計算結(jié)果表明,改進的DDPG算法訓(xùn)練收斂時間更短。
中圖分類號: TN959.1;TP181
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.211934
中文引用格式: 馬子杰,高杰,武沛羽,等. 用于巡航導(dǎo)彈突防航跡規(guī)劃的改進深度強化學(xué)習(xí)算法[J].電子技術(shù)應(yīng)用,2021,47(8):11-14,19.
英文引用格式: Ma Zijie,Gao Jie,Wu Peiyu,et al. An improved deep reinforcement learning algorithm for cruise missile penetration path planning[J]. Application of Electronic Technique,2021,47(8):11-14,19.
An improved deep reinforcement learning algorithm for cruise missile penetration path planning
Ma Zijie,Gao Jie,Wu Peiyu,Xie Yongjun
School of Electronics and Information Engineering,Beihang University,Beijing 100191,China
Abstract: Aiming at the problem of cruise missile penetration trajectory planning under the threat of dynamic early of warning aircraft radar, an improved deep reinforcement learning intelligent trajectory planning method is proposed. Firstly, aiming at the penetration mission of cruise missiles facing early warning threats, a typical combat scenario is constructed, and a prediction formula of radar detection probability of early warning aircraft is given. On this basis, a reward function that introduces dynamic early warning threats is designed, and the deep deterministic policy gradient algorithm(DDPG) is used to explore the intelligent penetration of cruise missiles. And then, in response to the poor exploration ability of the traditional DDPG algorithm that explores the uncorrelated timing of noise, Ornstein-Uhlenbeck noise is introduced to improve the training efficiency of the algorithm. The simulation results show that the improved DDPG algorithm training convergence time is shorter.
Key words : cruise missile;deep deterministic policy gradient algorithm;penetration strategy;deep reinforcement learning

0 引言

    巡航導(dǎo)彈是一種能機動發(fā)射、命中精度高、隱蔽性強、機動性能強的戰(zhàn)術(shù)打擊武器,但近年來由海陸空防御武器整合得到的體系化信息化反導(dǎo)防御系統(tǒng)態(tài)勢感知能力和區(qū)域拒止能力都得到了極大的提升,巡航導(dǎo)彈的戰(zhàn)場生存能力受到威脅,提升巡航導(dǎo)彈規(guī)避動態(tài)威脅的能力成為其能否成功打擊目標(biāo)的關(guān)鍵[1-3]。傳統(tǒng)的巡航導(dǎo)彈航跡規(guī)劃方法中將雷達(dá)威脅建模為一個靜態(tài)的雷達(dá)檢測區(qū)域,這難以適應(yīng)對決策實時性要求較高的動態(tài)戰(zhàn)場環(huán)境,而且其缺乏探索先驗知識以外的突防策略的能力,需要研究能應(yīng)對動態(tài)對抗的巡航導(dǎo)彈智能航跡規(guī)劃算法。

    深度強化學(xué)習(xí)是人工智能領(lǐng)域新的研究熱點[4-6]。隨著深度強化學(xué)習(xí)研究的深入,其開始被應(yīng)用于武器裝備智能突防,文獻(xiàn)[7]利用深度強化學(xué)習(xí)提出了一種新的空空導(dǎo)彈制導(dǎo)律,提高了打擊目標(biāo)的能力。文獻(xiàn)[8]針對目標(biāo)、打擊導(dǎo)彈、攔截導(dǎo)彈作戰(zhàn)問題,探究了是否發(fā)射攔截導(dǎo)彈、攔截導(dǎo)彈的最佳發(fā)射時間和發(fā)射后的最佳導(dǎo)引律。文獻(xiàn)[9]利用深度價值網(wǎng)絡(luò)算法探究了靜態(tài)預(yù)警威脅下的無人機航跡規(guī)劃問題,提升了航跡規(guī)劃的時間。文獻(xiàn)[10]將雷達(dá)威脅建模為一個靜態(tài)的雷達(dá)檢測區(qū)域,在二維平面探究了巡飛彈動態(tài)突防控制決策問題,提高了巡飛彈的自主突防能力。




本文詳細(xì)內(nèi)容請下載:http://ihrv.cn/resource/share/2000003690。




作者信息:

馬子杰,高  杰,武沛羽,謝擁軍

(北京航空航天大學(xué) 電子信息工程學(xué)院,北京100191)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。