《電子技術應用》
您所在的位置:首頁 > 電源技術 > 業(yè)界動態(tài) > 碳化硅賦能太陽能發(fā)電

碳化硅賦能太陽能發(fā)電

2021-06-01
來源: 安森美半導體

  太陽能發(fā)電正迅速成為解決電力難題的一個重要方案。大多數(shù)人都知道,過去10年來太陽能發(fā)電成本驚人地下降了82%。在太陽能選址(太陽能的位置)和共同土地使用(該地點的其他用途)方面的許多創(chuàng)新在增加太陽能發(fā)電的經濟性。最明顯的位置是在建筑物的頂部。許多擁有大面積平屋頂?shù)牧闶凵毯蛡}庫都增加了太陽能電池板,作為一個經濟決策。

forward (40).jpg

  共同使用概念的一個轉折是浮動太陽能電池板的想法。在這種設計中,太陽能電池板被放置在水體上,這樣它就不會占用寶貴的土地,而水可使電池板保持冷卻,從而提高太陽能轉換效率。有些人甚至建議將電池板漂浮在抽水蓄能水庫上,由電池板提供能量儲存在那里。

forward (39).jpg

  另一個例子被稱為“農業(yè)光伏”,這想法是安裝電池板以最大化空間并允許下面的土地用于耕種。太陽能電池板安裝得足夠高,以便設備可以在下面并有足夠的空間,讓植物獲得充足的光線。植物實際上受益于部分陰影,土壤保留了更多的水分,從而節(jié)省了水。此外,由于下方的濕度增加,電池板運行起來更冷卻,當然,還能從太陽產生清潔能源。

  無論太陽能發(fā)電站在哪里,都需要一個電力電子轉換器將其與電網連接。該轉換器包括一個可選的升壓級和一個逆變器,用于將直流電轉換為與電網同步的交流電。這轉換效率直接影響到項目的經濟性。碳化硅(SiC)是下一代功率開關技術,可提高并網效率,縮小冷卻系統(tǒng),并降低整個系統(tǒng)成本。

  太陽能電源轉換器的一個重要趨勢是將進入逆變器的電壓提高到1500 V。這將減少相同功率所需的電流,從而減小承載電流所需的電纜尺寸。

forward (38).jpg

  另一個趨勢是從大型集中式逆變器轉向更易于維護的小型分散式逆變器。這種拓撲結構也更加強固,因為一個逆變器發(fā)生故障不會關閉整個服務器場。對于標準化的分散式逆變器,設計人員嘗試在固定的重量和尺寸規(guī)格范圍內最大化功率。

forward (37).jpg

  SiC有助于提供更高能效,支持這兩個趨勢。與傳統(tǒng)的硅IGBT相比,SiC器件對更高的電壓最為有用。更高電壓的器件可簡化拓撲結構,從而無需多電平轉換器。

  SiC逆變器方案的損耗比IGBT方案低。SiC MOSFET的開關速度也更快,這可縮小無源器件特別是電感的尺寸。這兩個因素增加了功率密度,從而允許在同樣尺寸和重量的設備中獲得更高的功率。

  安森美半導體具備用于太陽能轉換器的全系列SiC器件。

  分立MOSFET和二極管采用各種封裝,提供靈活性

  集成SiC續(xù)流二極管的混合IGBT,實現(xiàn)成本優(yōu)化

  SiC混合模塊和全SiC模塊,實現(xiàn)緊湊的設計

  我們還提供交互式框圖,以支持您的太陽能逆變器設計需求。

forward (36).jpg




mmexport1621241704608.jpg


本站內容除特別聲明的原創(chuàng)文章之外,轉載內容只為傳遞更多信息,并不代表本網站贊同其觀點。轉載的所有的文章、圖片、音/視頻文件等資料的版權歸版權所有權人所有。本站采用的非本站原創(chuàng)文章及圖片等內容無法一一聯(lián)系確認版權者。如涉及作品內容、版權和其它問題,請及時通過電子郵件或電話通知我們,以便迅速采取適當措施,避免給雙方造成不必要的經濟損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。