文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2020.06.005
引用格式: 宋婷,陳戰(zhàn)偉. 基于方面情感的層次化雙注意力網絡[J].信息技術與網絡安全,2020,39(6):24-30.
情感分析是自然語言處理任務之一,文本中針對某實體給出總體評價的同時,對于實體的不同屬性也會分別給出各自觀點,由此文本的方面級情感分析是情感分析的重要任務之一,實現對文本觀點更深層次的情感挖掘。如何利用自然語言處理現有技術從社交網絡大量信息中獲取文本的情感傾向,是方面情感分析的主要研究工作。
方面級情感分析首先對方面詞進行提取,方面詞可以是一個單詞,或者是一個短語;接著針對提取出的不同方面分別獲取情感信息。例如:“Good food but dreadful service at that restaurant”,句中的評論實體是餐廳,分別對它的兩個方面即兩種屬性描述觀點,兩種屬性分別是food和service,相對應的情感極性分別是積極和消極。由此得出兩個方面情感極性可能相同,也可能相反。
深度學習在自然語言處理領域被廣泛應用,深度神經網絡模型早期在機器翻譯、文本情感分類等任務中取得了比以往更好的效果。注意力機制的結合使神經網絡模型高度關注特定目標的特征信息,當前使用較多的結合注意力機制的神經網絡模型有卷積神經網絡(CNN)和循環(huán)神經網絡(RNN)。文獻[3]提出基于多注意力機制的CNN,計算詞向量、詞性、位置信息的注意力機制,結合卷積神經網絡,在不依賴外部知識的情況下獲取方面級情感極性。文獻[4]提出首先利用長短期記憶網絡(LSTM)獲取句子的上下文信息,再使用卷積神經網絡提取注意力獲得具體的句子表示,模型中嵌入了方面信息,取得較好的分類效果?;谧⒁饬C制的CNN使用濾波器獲取文本特征,僅得到局部單詞間的依賴關系,未得到整體句子中所有單詞間關系?;谧⒁饬C制的RNN、LSTM等循環(huán)神經網絡考慮前一時刻的狀態(tài)信息,對過往信息具有記憶功能,但文本中單詞間的依賴關系隨著距離的增大逐漸減弱。上述兩種情況均使用單一注意力模式。本文提出層次化雙注意力GRU網絡的方面級情感分析模型,主要貢獻如下:
(1)提出采用雙注意力機制模式進行方面級情感分析,通過特定方面目標在句中的注意力機制和文本上下文自注意力機制,抽取方面特征信息和句子的全局依賴信息,從而深層次地獲取情感特征。
(2)利用層次化的GRU網絡獲取句子內部和句子間的依賴關系。網絡下層嵌入特定方面信息,獲取了針對方面目標的局部特征信息,網絡上層通過雙注意力機制和詞語層的輸入,獲取針對特定方面整體文本的特征依賴信息。
(3)在SemEval 2014兩個數據集和Twitter數據集上進行對比實驗,驗證了該方法的有效性,針對方面級情感,分類準確率均得到了有效提升。
本文詳細內容請下載: http://ihrv.cn/resource/share/2000003148
作者信息:
宋 婷1,陳戰(zhàn)偉2
(1.太原科技大學 計算機科學與技術學院,山西 太原030024;
2.中國移動通信集團山西有限公司,山西 太原030001)