應(yīng)對(duì)有線電視基礎(chǔ)設(shè)施下游發(fā)射器挑戰(zhàn)
2020-10-22
作者:Simon Whittle,ADI 技術(shù)項(xiàng)目經(jīng)理
來(lái)源:ADI
針對(duì)用戶(hù)需要更快互聯(lián)網(wǎng)連接的趨勢(shì),有線電視行業(yè)已開(kāi)發(fā)新的網(wǎng)絡(luò)架構(gòu),以便為用戶(hù)提供數(shù)Gb服務(wù)。該光纖深入方法采用遠(yuǎn)程PHY設(shè)備(RPD),通過(guò)使用數(shù)字光纖將關(guān)鍵硬件移到更靠近用戶(hù)的位置。這可與無(wú)線(蜂窩)網(wǎng)絡(luò)中的遠(yuǎn)程射頻頭相媲美,可節(jié)約空間,減少前端散熱,但也為遠(yuǎn)程設(shè)備帶來(lái)了新的設(shè)計(jì)挑戰(zhàn)。
雖然有線電視信號(hào)絕對(duì)頻率較低,但其帶寬比無(wú)線信號(hào)寬得多,從108 MHz到1218 MHz擴(kuò)展了幾個(gè)倍頻程,并具有多個(gè)帶內(nèi)諧波。RPD讓設(shè)計(jì)人員面臨諸多挑戰(zhàn),包括RF和混合信號(hào)硬件必須涵蓋更寬的頻率范圍,具有更高的RF功率、更低的底噪和更好的線性度,同時(shí)消耗更少的直流功耗。每個(gè)下行末級(jí)RF放大器的功率通常為18 W,對(duì)于4端口系統(tǒng),這大約是通常能夠提供給RPD(由RPD消耗)的140 W至160 W功率預(yù)算的50%。
將ADI的有線電視數(shù)字預(yù)失真(DPD)效率增強(qiáng)技術(shù),應(yīng)用于DPD優(yōu)化功率倍增器(ADCA3992),并結(jié)合先進(jìn)的高速數(shù)據(jù)轉(zhuǎn)換器技術(shù),利用單個(gè)DAC(例如AD9162)和單個(gè)ADC(如AD9208), 以及高度集成的時(shí)鐘解決方案(HMC7044),來(lái)實(shí)現(xiàn)全頻帶DPD。
本文介紹遠(yuǎn)程PHY的演進(jìn),以及ADI公司如何使用專(zhuān)有DPD并將ADI的算法和IP內(nèi)核集成到OEM的現(xiàn)有FPGA部署中來(lái)解決效率和線性度挑戰(zhàn)。
背景知識(shí)
自從60多年前作為社區(qū)接入電視(CATV)引入,有線電視已從簡(jiǎn)單的單向(僅下行)模擬鏈路發(fā)展為復(fù)雜的多模、多頻道雙向系統(tǒng)(包括上行或反向路徑),支持模擬電視、基于IP的標(biāo)清(SD)和高清(HD)數(shù)字電視以及高速數(shù)據(jù)互聯(lián)網(wǎng)下載和上傳。這些服務(wù)由多個(gè)系統(tǒng)運(yùn)營(yíng)商(MSO)提供。
有線數(shù)據(jù)和數(shù)字電視服務(wù)把使用CableLabs及相關(guān)參與公司制定的有線電纜數(shù)據(jù)系統(tǒng)接口規(guī)范(DOCSIS)的數(shù)據(jù)提供給消費(fèi)者。前端系統(tǒng)(電纜調(diào)制解調(diào)器終端系統(tǒng)或CMTS)的配置經(jīng)過(guò)了多次演進(jìn),包括添加EdgeQAM調(diào)制器作為獨(dú)立單元,或與CMTS集成為有線電視融合接入技術(shù)平臺(tái)(CCAP)的一部分。對(duì)下行數(shù)據(jù)容量的需求現(xiàn)在正以約50%的復(fù)合年增長(zhǎng)率(CAGR)增加,這意味著需求約每21個(gè)月翻一番。1為了滿(mǎn)足這種需求,自從1997年發(fā)布DOCSIS 1.0以來(lái),下行數(shù)據(jù)速率已從40 Mbps增加到1.2 Gbps(通過(guò)廣泛部署實(shí)施DOCSIS 3.0)。
這些下行數(shù)據(jù)速率的提高通過(guò)結(jié)合使用多項(xiàng)技術(shù)來(lái)實(shí)現(xiàn),包括頻道綁定、更復(fù)雜的調(diào)制(從64 QAM移至256 QAM)和更高的下行頻率上限(從550 MHz至750 MHz至1002 MHz)。在美國(guó),所有這些都是在保留傳統(tǒng)模擬電視服務(wù)6 MHz頻道規(guī)劃的情況下實(shí)現(xiàn)的(EuroDOCSIS和C-DOCSIS為8 MHz),但為了支持高達(dá)10 Gbps的下行速率,有必要做出更根本的改變,于是在2013年,發(fā)布了DOCSIS 3.1標(biāo)準(zhǔn)。在保留對(duì)傳統(tǒng)標(biāo)準(zhǔn)支持的同時(shí),DOCSIS 3.1采用頻譜效率更高的正交頻分多路復(fù)用(OFDM)技術(shù),頻道帶寬高達(dá)190 MHz,支持高達(dá)4096 QAM。此外,下行頻率范圍的頻率上限增加了超過(guò)20%,達(dá)到1218 MHz,并可選擇擴(kuò)展到1794 MHz。
但有一點(diǎn)始終沒(méi)有改變,都是使用具有75 Ω阻抗的同軸電纜物理連接到用戶(hù)電纜調(diào)制解調(diào)器。在20世紀(jì)90年代之前,系統(tǒng)前端和用戶(hù)之間使用100%同軸電纜,但最新部署為混合光纖銅纜(HFC)。在HFC中,模擬電光轉(zhuǎn)換器連接到前端的同軸輸出;然后信號(hào)通過(guò)光纖傳輸至靠近服務(wù)區(qū)的節(jié)點(diǎn),再通過(guò)光電轉(zhuǎn)換器,最終經(jīng)同軸電纜分配給用戶(hù)。通過(guò)架空或地下電纜與用戶(hù)的這最后一英里連接成為系統(tǒng)瓶頸,但升級(jí)到光纖到戶(hù)(FTTH)鏈路的成本很高且具有破壞性,因此有線電視MSO決定充分利用現(xiàn)有的同軸電纜資產(chǎn)。與雙絞線電話線相比,同軸電纜提供了一個(gè)相對(duì)良好的環(huán)境,本身能夠屏蔽干擾或串?dāng)_,并且因阻抗不匹配產(chǎn)生適度的信號(hào)反射。但是,從節(jié)點(diǎn)到最遠(yuǎn)用戶(hù)達(dá)1200英尺的典型距離下,頻率相關(guān)損耗特征明顯(108 MHz和1002 MHz之間存在近17 dB的斜率),需要插入具有高通響應(yīng)的RF濾波器進(jìn)行預(yù)加重或傾斜。
在典型的HFC部署中(如圖1所示),從光纖節(jié)點(diǎn)連接的一根主干同軸電纜可服務(wù)數(shù)百個(gè)用戶(hù),通過(guò)多路RF分路器將信號(hào)分配給子組,然后通過(guò)分接頭將分接電纜連接到個(gè)人用戶(hù)。在典型的節(jié)點(diǎn)+ n系統(tǒng)中,寬帶升壓放大器以固定的間隔插入網(wǎng)絡(luò)中,以放大信號(hào)電平,確保電纜調(diào)制解調(diào)器處具有足夠的信噪比(SNR)。
為用戶(hù)提供更大的數(shù)據(jù)容量
DOCSIS干線電纜上的可用數(shù)據(jù)帶寬由所有連接用戶(hù)共享,并可通過(guò)兩種方式為所有用戶(hù)提供更多帶寬:
? 提高通過(guò)電纜傳輸?shù)臄?shù)據(jù)速率
? 減少連接到電纜的用戶(hù)數(shù)量
如前所示,通過(guò)使用頻道綁定、更高階的調(diào)制方案以及擴(kuò)展頻譜以提供更多的頻道,可提高關(guān)鍵信息(headline)數(shù)據(jù)速率。但是,增加下行容量只是解決方案的一部分,因此,網(wǎng)絡(luò)架構(gòu)也在不斷發(fā)展以減少連接到節(jié)點(diǎn)的用戶(hù)數(shù)量,最初是通過(guò)節(jié)點(diǎn)分割來(lái)實(shí)現(xiàn)的,將支持的用戶(hù)數(shù)量從最多2000減少到不足500。這種方法有效但成本很高。節(jié)點(diǎn)分割的替代方法是修改網(wǎng)絡(luò)架構(gòu),通過(guò)使用帶數(shù)字光纖鏈路的分布式接入架構(gòu)(DAA)將物理層(PHY)與CCAP分離,如圖2所示。遠(yuǎn)程PHY硬件包含下行調(diào)制和RF級(jí)以及上行RF級(jí)和解調(diào)。從CCAP中移除體積龐大且耗電的PHY組件,在前端位置放一個(gè)邊緣路由器也能實(shí)現(xiàn)虛擬CCAP。
數(shù)字光纖的性能遠(yuǎn)遠(yuǎn)高于模擬光纖,且覆蓋范圍更大(能夠更靈活地確定節(jié)點(diǎn)位置),并且單根光纖支持大約5倍的波長(zhǎng)。DAA方法還消除了傳統(tǒng)HFC網(wǎng)絡(luò)中的電光和光電轉(zhuǎn)換。這些轉(zhuǎn)換限制了光節(jié)點(diǎn)輸出信號(hào)的動(dòng)態(tài)范圍:模擬轉(zhuǎn)換的底噪和線性度都會(huì)影響調(diào)制誤差率(MER),這將決定是否能夠支持高數(shù)據(jù)速率所需的高階調(diào)制。
挑戰(zhàn)是什么?
光纖深入架構(gòu)將通過(guò)更小的服務(wù)組規(guī)模、更自由的頻譜分配和更好的線路末端SNR和MER(DOCSIS 3.1中實(shí)現(xiàn)高階調(diào)制所必需的),來(lái)提升每個(gè)用戶(hù)的容量。由于數(shù)字光纖和新硬件的位置相對(duì)靠近用戶(hù),因此還有機(jī)會(huì)提供補(bǔ)充服務(wù)節(jié)點(diǎn),如在遠(yuǎn)程PHY節(jié)點(diǎn)上添加Wi-Fi接入點(diǎn)。但是,這也會(huì)給下行模擬傳輸鏈帶來(lái)幾個(gè)新的設(shè)計(jì)挑戰(zhàn)。
圖1.使用HFC部署有線電視
圖2.使用遠(yuǎn)程PHY部署有線電視
DOCSIS 3.1標(biāo)準(zhǔn)將下行頻率上限從1002 MHz擴(kuò)展到1218 MHz,意味著必須傳輸相當(dāng)于35個(gè)額外的6 MHz頻率通道,且向上傾斜度從17 dB增加到21 dB,如圖3所示。
任何新系統(tǒng)都需要與現(xiàn)有部署保持兼容,因此最高DOCSIS 3.0頻道中的功率(以999 MHz為中心)必須保持不變(通常為57 dBmV),這意味著最高頻道(以1215 MHz為中心)中所需的RF功率為61 dBmV。由于添加了頻道,增加了傾斜度,并且電纜調(diào)制解調(diào)器需要高SNR,因此節(jié)點(diǎn)輸出端口前的最后一個(gè)有源元件,即A類(lèi)超線性功率放大器(功率倍增器混合)所需的輸出信號(hào)電平提高了一倍多,達(dá)到76.8 dBmV的復(fù)合電平。為了滿(mǎn)足不斷增長(zhǎng)的RF功率需求,混合硬件設(shè)計(jì)人員必須將每端口混合直流偏置功率從10 W左右增加到18 W,并且在某些情況下,必須將直流電源電壓從行業(yè)標(biāo)準(zhǔn)值24 V增加到34 V。由于節(jié)點(diǎn)通常支持多達(dá)4個(gè)RF端口,每個(gè)端口都有其自己的混合端口,并且通常由通過(guò)同軸電纜注入的60 V交流電源供電,這就迫使對(duì)設(shè)計(jì)做出重大更改,并產(chǎn)生了新的散熱管理問(wèn)題。
為了支持采用DOCSIS 3.1的更高階QAM方案,節(jié)點(diǎn)輸出端對(duì)MER的苛刻要求已從43 dB增加到48 dB。2在這樣高的MER要求下,DAC時(shí)鐘上的相位噪聲和雜散信號(hào)會(huì)對(duì)系統(tǒng)性能產(chǎn)生影響。功率倍增器直接影響MER和帶內(nèi)帶外失真的主要不利因素是非線性失真,包含諧波和交調(diào)失真。在108 MHz至1218 MHz的倍頻程工作范圍內(nèi),存在多個(gè)帶內(nèi)奇偶次諧波,而在185個(gè)D3.0載波(或等效載波)下,會(huì)產(chǎn)生一組非常復(fù)雜的IM產(chǎn)物。傾斜也有顯著的影響,因?yàn)檩^高頻道中的功率比最低頻道中的功率大100多倍,所以這里會(huì)產(chǎn)生顯著的差頻積。峰均功率比(PAPR)超過(guò)12 dB。
所有這些因素結(jié)合起來(lái),為功率倍增器設(shè)計(jì)人員帶來(lái)了巨大的挑戰(zhàn):更寬的帶寬、更高的峰均功率以及改善線性度。最新的A類(lèi)GaAs/GaN推挽混合器件(如ADCA3992)可滿(mǎn)足帶寬、RF功率和線性度要求,但RF系統(tǒng)設(shè)計(jì)人員所面臨的挑戰(zhàn)無(wú)疑是降低功耗:650 mW的RF輸出功率的直流輸入約為18 W時(shí)(等效于76.8 dBmV復(fù)合電平),直流到RF的轉(zhuǎn)換效率僅為3.6%。
系統(tǒng)解決方案是什么?
一旦混合設(shè)備能夠支持所需的帶寬和功率,解決方案的第一部分就是確保輸出端口前的最后一個(gè)有源元件,即混合功率倍增器能夠獲得清晰的信號(hào)。通過(guò)使用高性能寬帶16位RF DAC(如AD9162)和低相位噪聲、低雜散輻射JESD204B兼容時(shí)鐘源(如HMC7044),可在DAC輸出端跨整個(gè)DOCSIS 3.1頻率范圍實(shí)現(xiàn)約52 dB MER。
解決方案的第二部分更復(fù)雜。理想情況下,任何解決方案都會(huì)既提高功率倍增器的輸出功率能力又提高M(jìn)ER,同時(shí)降低功耗,但它們幾乎是相互對(duì)立的:在恒定輸出功率下,降低功耗會(huì)使MER性能下降,或者需要損失RF功率性能,才能使MER保持不變。雖然可以使用包絡(luò)跟蹤(ET)等技術(shù)來(lái)提高效率,但創(chuàng)建非常寬的帶寬包絡(luò)信號(hào)并將ET過(guò)程產(chǎn)生的顯著失真線性化將帶來(lái)額外的挑戰(zhàn)。
要兼顧效率和MER,具有吸引力的解決方案就是DPD,整個(gè)無(wú)線蜂窩行業(yè)幾乎普遍采用。數(shù)字預(yù)失真(DPD)允許用戶(hù)在更高效但非線性更明顯的區(qū)域中運(yùn)行混合功率倍增器,然后先預(yù)先校正數(shù)字域中的失真,再將數(shù)據(jù)發(fā)送到放大器。如圖4所示,DPD在數(shù)據(jù)到達(dá)放大器之前對(duì)其進(jìn)行整形,以抵消放大器產(chǎn)生的失真,從而擴(kuò)大功率倍增器的線性范圍。
圖3.頻率相關(guān)電纜損耗的傾斜補(bǔ)償
圖4.數(shù)字預(yù)失真
在擴(kuò)大的線性工作范圍中,DPD讓放大器能夠在降低的偏置電流或電源電壓下更自由地運(yùn)行(從而降低功耗),或提高M(jìn)ER和誤碼率(BER),甚至可能同時(shí)兼顧。盡管數(shù)字預(yù)失真已廣泛應(yīng)用于無(wú)線蜂窩基礎(chǔ)設(shè)施,但在電纜環(huán)境中實(shí)施數(shù)字預(yù)失真有獨(dú)特而又有挑戰(zhàn)性的要求。這包括對(duì)超寬帶寬應(yīng)用線性化,盡量減少實(shí)施DPD所需的數(shù)字信號(hào)處理功耗,以及在高傾斜頻譜下工作。所有這一切只能通過(guò)對(duì)硬件、FPGA和軟件進(jìn)行適度的更改(會(huì)增加成本)來(lái)實(shí)現(xiàn)。
由于通過(guò)將放大器驅(qū)動(dòng)到非線性工作區(qū)域來(lái)提高效率,多個(gè)帶內(nèi)失真產(chǎn)物給DPD帶來(lái)了獨(dú)特的挑戰(zhàn)。不僅是大信號(hào)帶寬,還有它在頻譜(從直流開(kāi)始僅為108 MHz)上的位置都對(duì)DPD構(gòu)成了挑戰(zhàn)。有線信號(hào)的性質(zhì)與無(wú)線截然不同,無(wú)線信號(hào)其所需信號(hào)的帶寬(例如,60 MHz)比RF中心頻率(例如,2140 MHz)小很多。在典型的108 MHz至1218 MHz DOCSIS 3.1下行分配中,所需信號(hào)帶寬為1110 MHz,中心頻率為663 MHz。所有非線性系統(tǒng)都會(huì)發(fā)生諧波失真。電纜數(shù)字預(yù)失真的重點(diǎn)是帶內(nèi)諧波失真產(chǎn)物。在典型的無(wú)線系統(tǒng)中,三次和五次諧波最重要,因?yàn)槠渌a(chǎn)物在頻帶外,可通過(guò)傳統(tǒng)濾波器濾除。在典型的電纜部署中,最低載波的前11個(gè)諧波都在頻帶內(nèi)。
相比只需要考慮奇數(shù)次諧波的無(wú)線蜂窩應(yīng)用,電纜應(yīng)用中的偶數(shù)次和奇數(shù)次諧波均在頻帶內(nèi),可產(chǎn)生多個(gè)重疊的失真區(qū)域。這在一定程度上會(huì)對(duì)任何數(shù)字預(yù)失真解決方案的復(fù)雜性和精密性產(chǎn)生嚴(yán)重影響,因?yàn)樗惴ū仨毻ㄟ^(guò)簡(jiǎn)單的窄帶假設(shè)。數(shù)字預(yù)失真解決方案必須適應(yīng)所有階次的諧波失真。每個(gè)階次k需要[k/2] + 1項(xiàng)(二階:k = 2 → 2項(xiàng),三階:k = 3 → 2項(xiàng),四階:k = 4 → 3項(xiàng)等)。在窄帶系統(tǒng)中,偶數(shù)階項(xiàng)可以被忽略,奇數(shù)階在每個(gè)目標(biāo)頻帶內(nèi)產(chǎn)生1個(gè)項(xiàng)。電纜應(yīng)用中的數(shù)字預(yù)失真必須考慮奇數(shù)階和偶數(shù)階諧波失真,并且還必須考慮到每個(gè)階可能有多個(gè)重疊的帶內(nèi)元素。
諧波失真校正定位
考慮到傳統(tǒng)窄帶數(shù)字預(yù)失真解決方案的處理在復(fù)雜的基帶處完成,我們主要關(guān)注對(duì)稱(chēng)位于載波周?chē)闹C波失真。在寬帶電纜系統(tǒng)中,盡管保持了位于一次諧波周?chē)哪切╉?xiàng)的對(duì)稱(chēng)性,但是這一對(duì)稱(chēng)性不再適用于更高階次的諧波產(chǎn)物。
圖5.寬帶電纜應(yīng)用中寬帶諧波失真的影響
如圖6a所示,傳統(tǒng)窄帶數(shù)字預(yù)失真在復(fù)雜基帶處完成。在這些實(shí)例中,僅一次諧波產(chǎn)物在頻帶范圍內(nèi),因此其基帶產(chǎn)物直接轉(zhuǎn)換為RF??紤]寬帶電纜數(shù)字預(yù)失真時(shí)(圖6b),較高階次的諧波失真必須是頻率偏移,才能使上變頻后的基帶產(chǎn)物正確位于實(shí)際RF頻譜中。
圖7概要顯示了一種數(shù)字預(yù)失真的實(shí)現(xiàn)。在理想情況下,從數(shù)字上變頻器(DUC)(通過(guò)數(shù)字預(yù)失真)到DAC乃至通過(guò)功率倍增器的路徑將沒(méi)有帶寬限制。同樣地,觀測(cè)路徑上的ADC將對(duì)全帶寬進(jìn)行數(shù)字化。請(qǐng)注意,為了進(jìn)行說(shuō)明,我們擴(kuò)展2倍帶寬的信號(hào)路徑;在某些無(wú)線蜂窩應(yīng)用中,可擴(kuò)展到3至5倍的帶寬。理想方案是通過(guò)數(shù)字預(yù)失真產(chǎn)生帶內(nèi)項(xiàng)和帶外項(xiàng),從而完全消除功率放大器引入的失真。需要注意的是,為了準(zhǔn)確消除失真,需要在目標(biāo)信號(hào)的帶寬之外創(chuàng)建項(xiàng),這一點(diǎn)非常重要。在實(shí)際方案中,信號(hào)路徑具有帶寬限制和傾斜特性,數(shù)字預(yù)失真性能無(wú)法達(dá)到理想方案要求
ADI公司開(kāi)發(fā)了一個(gè)完全實(shí)時(shí)、閉環(huán)、自適應(yīng)電纜數(shù)字預(yù)失真解決方案,由FPGA結(jié)構(gòu)中的執(zhí)行器和嵌入式處理器中基于軟件的自適應(yīng)機(jī)制組成。該實(shí)現(xiàn)方案使用Intel? Arria? 10 660 FPGA和嵌入式ARM? Cortex?處理器。DPD IP內(nèi)核和ARM的功耗為5.3 W,盡管使用更新一代的FPGA或轉(zhuǎn)換為ASIC,此功率仍應(yīng)低于3 W。
圖6.寬帶數(shù)字預(yù)失真復(fù)雜基帶處理中的頻率偏移要求。(a) 傳統(tǒng)窄帶數(shù)字預(yù)失真在復(fù)雜基帶處完成
(b) 寬帶電纜數(shù)字預(yù)失真、OOB HD必須是頻率偏移以允許RF上變頻
圖7.無(wú)帶寬限制的理想化數(shù)字預(yù)失真方案
結(jié)果
圖8顯示ADCA3992在76.8 dBmV總復(fù)合電源、34 V電源電壓、400 mA偏置電流(13.6 W直流電源)下工作的測(cè)試結(jié)果。
圖8.ADCA3992在76.8 dBmV下沒(méi)有數(shù)字預(yù)失真(藍(lán)色)和有數(shù)字預(yù)失真(橙色)時(shí)的性能
測(cè)試信號(hào)是一串DOCSIS 3.0載波,中心頻率為111 MHz至1215 MHz,傾斜度為21 dB。引入了少量的間隙,以便觀察頻帶失真??梢钥吹?,頻帶底部失真約改善了6 dB,頻帶頂部超過(guò)8 dB。
與530 mA標(biāo)稱(chēng)非數(shù)字預(yù)失真功率倍增器電流相比,直流電源節(jié)省4.4 W,那么,4端口系統(tǒng)節(jié)省的總功率為17.6 W減5.3 W FPGA電源,得到12.3 W。對(duì)于72 W至59.7 W的4端口系統(tǒng),功耗(散熱)顯著降低。每個(gè)倍增器的偏置電流很可能進(jìn)一步回退至350 mA (11.9 W),同時(shí)仍達(dá)到41 dB的MER目標(biāo)值,從而系統(tǒng)凈節(jié)省19.2 W。
結(jié)論
盡管高速移動(dòng)數(shù)據(jù)和光纖日益得到廣泛應(yīng)用,但現(xiàn)有最后一英里網(wǎng)絡(luò)的巨大覆蓋范圍及其相對(duì)良好的電氣特性,可確保在可預(yù)見(jiàn)的未來(lái),它們?nèi)詫⑹窍蛳M(fèi)者提供語(yǔ)音、視頻和數(shù)據(jù)服務(wù)的重要工具。隨著有線電視網(wǎng)絡(luò)過(guò)渡到DOCSIS 3.1,并且不斷地發(fā)展,滿(mǎn)足更寬的頻率范圍、更高的功率、更好的調(diào)制精度以及更高的功效等系統(tǒng)性能要求變得更加困難。
數(shù)字預(yù)失真提供了一種可解決這些相互沖突需求的方式,但在電纜應(yīng)用中的實(shí)施也構(gòu)成了非常獨(dú)特和極具難度的挑戰(zhàn)。ADI已開(kāi)發(fā)出一套全面的系統(tǒng)解決方案來(lái)應(yīng)對(duì)這些挑戰(zhàn),其中包含混合信號(hào)硅(DAC、ADC和時(shí)鐘)、RF功率模塊(GaN/GaAs混合)和先進(jìn)算法。這三種技術(shù)的結(jié)合為設(shè)備制造商提供了一個(gè)靈活的高性能解決方案,能夠以最小的妥協(xié)在功耗與系統(tǒng)性能之間實(shí)現(xiàn)平衡。軟件定義線性化還支持原有電纜技術(shù)到新一代電纜技術(shù)的輕松過(guò)渡,新一代電纜技術(shù)中預(yù)計(jì)將包含全雙工(FD)、擴(kuò)展帶寬(至1794 MHz)和包絡(luò)跟蹤(ET)。
本文借鑒了Patrick Pratt的數(shù)字預(yù)失真圖,筆者對(duì)此表示感謝。
參考資料
1 Robert L. Howald。“光纖前沿?!贝杭炯夹g(shù)論壇論文集,2016年。
2 有線電纜數(shù)據(jù)服務(wù)接口規(guī)范,DOCSIS? 3.1—物理層規(guī)范:CM-SP-PHYv3.1-I08-151210。CableLabs,2017年5月。
作者簡(jiǎn)介
Simon Whittle是通信業(yè)務(wù)部門(mén)無(wú)線系統(tǒng)部的技術(shù)項(xiàng)目經(jīng)理。工作地點(diǎn)在英國(guó)巴斯,主要負(fù)責(zé)有線電視和5G毫米波系統(tǒng)項(xiàng)目。在2012年7月加入ADI之前,Simon曾在蜂窩通信基礎(chǔ)設(shè)施行業(yè)工作,負(fù)責(zé)領(lǐng)導(dǎo)團(tuán)隊(duì)開(kāi)發(fā)3G和4G遠(yuǎn)程射頻頭技術(shù)。在此之前,他從事蜂窩、移動(dòng)無(wú)線電和廣播應(yīng)用的接收器和高功率發(fā)射器開(kāi)發(fā)工作,并擁有多項(xiàng)專(zhuān)利。他于1983年畢業(yè)于英國(guó)薩里大學(xué),是IEEE成員。