《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計應(yīng)用 > 基于卷積神經(jīng)網(wǎng)絡(luò)的礦井安全帽佩戴檢測
基于卷積神經(jīng)網(wǎng)絡(luò)的礦井安全帽佩戴檢測
2020年電子技術(shù)應(yīng)用第9期
劉 欣,張燦明
安徽省煤炭科學(xué)研究院,安徽 合肥 230001
摘要: 在煤礦生產(chǎn)中,工人由于未佩戴安全帽而受傷的事故時有發(fā)生。為了構(gòu)建數(shù)字化安全帽監(jiān)測系統(tǒng),提出了一種基于卷積神經(jīng)網(wǎng)絡(luò)的安全帽佩戴檢測模型。采用先進的Darknet53網(wǎng)絡(luò)作為模型主干,用于提取圖片的特征信息。此外,在模型中引入注意力機制用于豐富特征之間的信息傳播,增強模型的泛化能力。最后,制作了安全帽佩戴預(yù)訓(xùn)練數(shù)據(jù)集和實際礦井場景數(shù)據(jù)集,并在PyTorch平臺進行全面的對比實驗驗證了模型設(shè)計的有效性,模型在實際礦井場景數(shù)據(jù)集上獲得92.5 mAP的優(yōu)異性能。
中圖分類號: TN919.8;TP391.41
文獻標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.200109
中文引用格式: 劉欣,張燦明. 基于卷積神經(jīng)網(wǎng)絡(luò)的礦井安全帽佩戴檢測[J].電子技術(shù)應(yīng)用,2020,46(9):38-42,46.
英文引用格式: Liu Xin,Zhang Canming. Wearing safety helmet detection based on convolutional neural networks for mines[J]. Application of Electronic Technique,2020,46(9):38-42,46.
Wearing safety helmet detection based on convolutional neural networks for mines
Liu Xin,Zhang Canming
Anhui Academy of Coal Science,Hefei 230001,China
Abstract: In the production of coal mines, accidents happen to workers once in a while because of absence of safety helmet. In order to establish digital safety helmet detection system, a wearing safety helmet detection model based on convolutional neural networks is proposed. Specifically, the model is based on advanced Darknet53 as model backbone, which is used to extract feature information from pictures. In addition, attention mechanism is introduced to enrich the propagation of information between features, enhancing the generalization of model. Finally, a wearing safety helmet pre-training dataset and a real mine scene dataset are built, and comprehensively comparative experiments are conducted on PyTorch platform to verify the effectiveness of the model designs, which achieves an excellent performance of 92.5 mAP on the real mine scene dataset.
Key words : wearing safety helmet detection;deep learning;convolutional neural networks;attention mechanism

0 引言

    在煤礦生產(chǎn)過程中,佩戴安全帽對于生產(chǎn)人員的人身安全至關(guān)重要。但由于缺乏安全意識和監(jiān)管不足等原因,工人因未佩戴安全帽而受傷的事故頻頻發(fā)生,輕則停工整頓影響生產(chǎn)進度,重則危害生命安全?,F(xiàn)如今,在數(shù)字化礦山的發(fā)展浪潮中,對于安全帽佩戴的監(jiān)測需求日益提升。

    自2012年AlexNet[1]在ImageNet圖片分類比賽上大放光彩,以卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,CNNs)為代表的深度學(xué)習(xí)技術(shù)在多個領(lǐng)域上取得突破性成功,例如人臉檢測[2]、火災(zāi)預(yù)防[3]、風(fēng)格遷移[4]等?;贑NNs的目標(biāo)檢測方法采用多個卷積層堆疊,憑借著卷積運算的特性,能夠自動地獲取豐富的特征信息,進而分類獲得優(yōu)異的預(yù)測性能。在目標(biāo)檢測技領(lǐng)域,基于深度學(xué)習(xí)的方法多數(shù)可分成兩類:第一類是基于候選區(qū)域的檢測方法,R-CNN[5]率先將深度學(xué)習(xí)技術(shù)應(yīng)用于目標(biāo)檢測任務(wù)。Faster R-CNN[6]引入候選區(qū)域網(wǎng)絡(luò)替代手工選擇候選區(qū)域,并實現(xiàn)多步驟聯(lián)合訓(xùn)練;第二類是基于回歸分類的檢測方法,REDMON J等人[7]率先提出單步驟目標(biāo)檢測模型YOLO,該模型將待檢圖片分成若干個網(wǎng)格區(qū)域,直接預(yù)測目標(biāo)邊界框和置信度。在此之后,YOLO2[8]和YOLO3[9]在YOLO的基礎(chǔ)上增加了多種深度學(xué)習(xí)技術(shù),大幅度提升預(yù)測性能和推斷速度。




本文詳細內(nèi)容請下載:http://ihrv.cn/resource/share/2000002977




作者信息:

劉  欣,張燦明

(安徽省煤炭科學(xué)研究院,安徽 合肥 230001)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。