《電子技術應用》
您所在的位置:首頁 > 模擬設計 > 設計應用 > Innovus機器學習在高性能CPU設計中的應用
Innovus機器學習在高性能CPU設計中的應用
2020年電子技術應用第8期
邊少鮮1,Micheal Feng1,David Yue1,欒曉琨1,蔡 準2,蔣劍鋒1
1.天津飛騰信息技術有限公司,湖南 長沙410000;2.上海楷登電子科技有限公司,上海201204
摘要: 高性能芯片設計在7 nm及更高級的工藝節(jié)點上,設計規(guī)模更大、頻率更高、設計數(shù)據(jù)和可變性更復雜,物理設計難度增大。機器學習在多領域均獲得成功應用,復雜的芯片設計是應用機器學習的一個很好的領域。Cadence將機器學習算法內(nèi)置到Innovus工具中,通過對芯片設計數(shù)據(jù)進行學習建模,建立機器學習模型,從而提升芯片性能表現(xiàn)。建立了一個應用機器學習優(yōu)化延時的物理流程來提升芯片設計性能。詳細討論分析了分別對單元延時、線延時、單元和線延時進行優(yōu)化對設計的影響,進而找到一個較好的延時優(yōu)化方案。最后利用另一款設計難度更大,性能要求更高的模塊從時序、功耗、線長等方面較為全面地分析驗證設計方案的合理性。
中圖分類號: TN402
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.209801
中文引用格式: 邊少鮮,Micheal Feng,David Yue,等. Innovus機器學習在高性能CPU設計中的應用[J].電子技術應用,2020,46(8):54-59,63.
英文引用格式: Bian Shaoxian,Micheal Feng,David Yue,et al. Innovus machine learning application in performance CPU design[J]. Application of Electronic Technique,2020,46(8):54-59,63.
Innovus machine learning application in performance CPU design
Bian Shaoxian1,Micheal Feng1,David Yue1,Luan Xiaokun1,Cai Zhun2,Jiang Jianfeng1
1.Tianjin Phytium Technology Co.,Ltd.,Changsha 410000,China;2.Cadence Design Systems,Inc.,Shanghai 202014,China
Abstract: The high-performance chip design has a larger design scale, higher frequency, more complex design data and reliability, and more signoff indicators under 7 nm and higher process nodes. Machine learning has been successfully applied in many fields, and complex chip design is a good field for applying machine learning. Cadence built the algorithm into the Innovus tool, and built the machine learning model by learning and modeling the chip design data to improve chip performance. A physical design process that applies machine learning to optimize latency is established to improve chip design performance. This paper presents a machining-learning-based physical design flow that optimizes delay to improve chip design performance. In orde to choose a better solution,the effect of optimizing the cell delay,net delay,cell and net delay separately on the design was discussed and analyisised in detail. Finally,the solution is applied to another block design with more difficult design and higher performance requirements . To verifies the consistency of the flow,a more comprehensive analysis is completed from the aspects of timing,power,wire length,etc.
Key words : machine learning;Innovus;chip design;physical design

0 引言

    摩爾定律揭示了集成電路的集成度和技術節(jié)點的飛速發(fā)展,這使得芯片設計的復雜度和數(shù)據(jù)量快速上升,尤其是芯片的物理設計更是涉及海量的數(shù)據(jù)和信息,且運行時間和設計周期漫長,迭代一次的時間和資源代價很大,這對設計師的經(jīng)驗與能力要求很高。機器學習如今在各個領域都有廣泛的應用,其能學習數(shù)據(jù)規(guī)律建立模型從而快速推斷結果[1]。如果能在物理設計中應用機器學習挖掘設計規(guī)律,且基于推斷的求解來進行物理設計,可加速芯片設計。國內(nèi)外很多學者在此方面有了成功的研究,包括PAN D Z等詳細介紹的在物理設計中應用機器學習[2]。LI B使用機器學習由全局布線線預測詳細布線結果[3]。TSMC在物理設計中應用機器學習的兩款芯片分別可使頻率提升40 MHz和減少20 000時鐘門控單元等[4]。

    本文基于Cadence Innovus工具建立應用機器學習進行延時優(yōu)化的物理設計流程,研究7 nm工藝下不同層金屬的特性,設置三個實驗組單元延時優(yōu)化、線延時優(yōu)化、單元和線延時同時優(yōu)化與傳統(tǒng)物理設計流程進行對比分析。同時將應用機器學習進行延時優(yōu)化的物理設計流程應用到更大規(guī)模,設計復雜度更高的ARM架構的一款CPU設計中,均得到了很好地性能優(yōu)化。最終確定了兩款模塊芯片均采用Innovus機器學習進行延時優(yōu)化的物理設計流程。




本文詳細內(nèi)容請下載:http://ihrv.cn/resource/share/2000002945




作者信息:

邊少鮮1,Micheal Feng1,David Yue1,欒曉琨1,蔡  準2,蔣劍鋒1

(1.天津飛騰信息技術有限公司,湖南 長沙410000;2.上??请娮涌萍加邢薰?,上海201204)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉載。