根據(jù)鐘南山院士的最新預測,已經(jīng)持續(xù)一個多月的新冠病毒疫情預計2月中下旬將出現(xiàn)峰值,4月左右全國接近平穩(wěn)。
這意味著,這場沒有硝煙的戰(zhàn)爭我們?nèi)耘f不能放松,直到疫情徹底解除。
歷史經(jīng)驗證明,控制傳染源、切斷傳播途徑、保護易感人群始終是最有效的防控手段。基于這三大原則,以及強于17年前的技術(shù)水平和診療手段,我們有信心贏得這場戰(zhàn)“疫”的最終勝利。
況且,除了科研人員和醫(yī)務工作者,今天我們在病毒防控名單上還發(fā)現(xiàn)了AI。
在全球范圍內(nèi),AI已然是最前沿的創(chuàng)新技術(shù),但在這場突發(fā)的公共衛(wèi)生事件中,我們看到AI已從云端“落地”。
舉兩個例子,一個是1月30日百度宣布開放LinearFold線性算法,該算法將此次新型冠狀病毒的全基因組二級結(jié)構(gòu)預測從55分鐘縮短至27秒,提速120倍。另一個是浙江省疾控中心上線的自動化全基因組檢測分析平臺,基于阿里達摩院研發(fā)AI算法將原來數(shù)小時的疑似病例基因分析縮短至半小時。
更重要的是,AI防疫不僅表現(xiàn)在開放算法、算力上,在防控一線我們也能看到大量AI支援的“身影”。
此次新冠病毒爆發(fā),科研、醫(yī)護人員與AI的協(xié)作也讓我們對戰(zhàn)勝疫情增加了一份信心。
一、走上抗擊疫情最前線:AI+醫(yī)療
AI+醫(yī)療的結(jié)合,是人工智能最重要的應用場景之一。在此次抗擊疫情的最前線,我們看到AI與醫(yī)療的結(jié)合也已有了很多重大突破。
2019年9月,Nature子刊上發(fā)表的一項研究顯示,研發(fā)新藥時利用AI算法,21天內(nèi)就能夠設計出潛在分子架構(gòu),并在46天內(nèi)完成初步生物學驗證。
擅長數(shù)據(jù)分析、文獻篩選的AI可以在前期藥物研發(fā)中大有可為,同時節(jié)約研發(fā)投入。更重要的是,它可以大幅縮短研發(fā)周期,讓我們在這場與時間和疫情的賽跑中,搶占先機。
此次新冠病毒爆發(fā),在疫情防控的最前端——疫苗研發(fā)和疑似病例診斷上,我們都看到了AI的身影。
1、 AI助力疫苗研發(fā)、藥物篩選
2月4日,一篇刊登于頂級醫(yī)學期刊《柳葉刀》的文章表示,借助深度學習和知識圖譜,研究者發(fā)現(xiàn)經(jīng)典JAK激酶抑制劑巴瑞替尼(Baricitinib)或可用于治療新型冠狀病毒肺炎。
而這次用于尋找潛在藥物的技術(shù)是BenevolentAI的知識圖譜。
這是一個大型的結(jié)構(gòu)化醫(yī)藥信息倉庫,包括了大量使用機器學習抽取出來的連接關(guān)系。根據(jù)新冠病毒的特點,研究者使用該知識圖譜驗證可以幫助治療的藥物——即那些能夠阻斷病毒感染進程的藥物。
AI算法在新藥/疫苗研發(fā)領(lǐng)域的作用,正是提升效率。人工智能比傳統(tǒng)的方法更有優(yōu)勢的地方,在于利用機器學習、人工智能的方法,能夠在在非常早期,對未來將會成為藥物的這些分子同時進行相對全面的判斷,也就能提前篩掉后續(xù)實驗會失敗的分子。
國內(nèi)受到關(guān)注的案例就是我們上面提到的百度LinearFold線性算法。
根據(jù)世界衛(wèi)生組織(WHO)資料顯示,引發(fā)此次疫情的病毒2019-nCoV,是一種具外套膜(envelope)的正鏈單股RNA病毒,RNA(核糖核酸)冠狀病毒,直徑約80~120nm。
確定此類疾病重要的檢測手段,便是通過核酸檢測方式提取疑似病例血液中核酸序列,并與目標病毒比對,即可基本確定有無病原體感染。然而,疑似病例的病毒樣本進行全基因組序列分析比對費時費力,而借助AI可代替人力完成初篩工作,大幅提高檢測效率。
百度LinearFold線性算法于2019年7月首次提出,該算法使得整序列、整基因組的RNA結(jié)構(gòu)預測成為可能,也是RNA結(jié)構(gòu)預測領(lǐng)域40年來第一次重大提速。
2020年1月30日,百度向科研機構(gòu)免費開放了這項世界上現(xiàn)有最快的RNA結(jié)構(gòu)預測網(wǎng)站及算法。
算力及算法對于疫情防控的重要性在于,新藥和疫苗研發(fā)期間需要進行大量的數(shù)據(jù)分析、大規(guī)模文獻篩選和科學超算工作。因此,我們看到百度之外,商湯科技1月24日為國家重點研發(fā)計劃首席科學家、中山大學藥學院羅海彬教授提供了算力支持;阿里云則是在1月29日宣布向全球公共科研機構(gòu)免費開放一切AI算力。
2、 AI增加疑似病例篩查效率
對于疑似病例的篩查,AI也能提供行之有效的解決方案。
斯坦福開發(fā)了一個名為CheXNet的算法,能比放射科醫(yī)生更準確地確診肺炎。CheXNet是一個在ChestX-ray14中訓練的121層-卷積神經(jīng)網(wǎng)絡,ChestX-ray14是截止至論文發(fā)表時公開的最大的胸部X光數(shù)據(jù)集。
該數(shù)據(jù)集有超過10萬張胸透X光圖,包含14種不同疾病的信息。
研究人員讓四名放射科醫(yī)師檢查一組胸部影像并進行診斷,并將診斷結(jié)果與CheXNet的處理結(jié)果相比。CheXNet不僅擊敗了所有的放射科醫(yī)生,還在發(fā)現(xiàn)肺炎的同時,證明了其他13種疾病的識別能力。
在RT-PCR檢測病毒核酸檢測中,前文我們講到的浙江省疾控中心自動化全基因組檢測分析平臺,基于阿里達摩院研發(fā)的AI算法,可將原來數(shù)小時的疑似病例基因分析縮短至半小時,大幅縮短確診時間,并能精準檢測出病毒的變異情況。
阿里方面稱,疫情發(fā)生后,達摩院算法專家顧斐博士第一時間針對新型冠狀病毒基因進行特征分析,并推出多個算法模型。在序列比對過程中,達摩院對算法增加了分布式設計,有效提升比對效率;在病毒序列拼接階段使用分布式設計的de Bruijn圖算法,變異病毒也能精準檢測。
浙江省疾控中心基因測序負責人孫逸博士表示,基于該平臺,未來還可以在短時間內(nèi)將檢測范圍覆蓋整個確診病例,也為后續(xù)疫苗與藥物研發(fā)打下基礎(chǔ)。
二、助力基層疫情防控,防患于未然
如果你關(guān)注新聞,應該已經(jīng)刷到了這樣一條新聞,在機場、火車站、地鐵等人流密集的公共場所,出現(xiàn)了AI測溫裝置或者紅外測溫。
它們的好處在于“無接觸測量”,以AI測溫來說,目前百度開發(fā)的AI測溫系統(tǒng)已經(jīng)落地北京清河火車站。該系統(tǒng)利用非接觸、可靠、高效且無感知的方式,對體溫超出一定閾值的流動人員,系統(tǒng)會發(fā)出異常預警,并快速展示出體溫不在正常范圍的人員及溫度,遏制新型冠狀病毒在公共場所的傳播。
AI在疫情篩查管理方面,其優(yōu)勢主要集中在可替代大規(guī)模、重復性、有接觸風險的篩查工作。體溫測量正是這樣一個大規(guī)模、重復性和有解除風險的工作,但眼下正處于疫情防控的重要階段,體溫測量也是其中最重要的環(huán)節(jié)之一,無法避開。
百度的AI測溫系統(tǒng),綜合了圖像識別和紅外成像技術(shù),可以基于人臉關(guān)鍵點檢測及圖像紅外溫度點陣溫度分析算法,對人流區(qū)域多人額頭溫度進行快速篩選及預警,具有檢測率高、速度快、靈敏度高的特點,可以很好的代替人工測溫。
在北京清河地鐵站,百度AI多人體溫快速檢測解決方案已落地19個檢測點,測溫誤差控制在0.05攝氏度上下,識別準確率達90%以上。
同樣,國內(nèi)另一家人工智能公司曠視科技在疫情期間緊急研發(fā)的AI測溫系統(tǒng)也已在北京市海淀區(qū)政務大廳、部分地鐵站等試點正式投入使用。
據(jù)《人民日報》報道,曠視AI測溫系統(tǒng)采用“人體識別+人像識別+紅外/可見光雙傳感”的技術(shù)方案,支持大于3米的非接觸遠距離測溫,輔助火車站、汽車站、地鐵站、機場等高密度人員流動場景下的工作人員快速篩查疑似高溫人員。往來者無需停留和摘下防護工具也能實現(xiàn)快速篩查,且溫度檢測誤差在±0.3℃以內(nèi)。
AI在疫情防控基層起到作用的另一個案例是助力社區(qū)防疫。眼下,社區(qū)基層的防疫工作,如疫情排查、流動情況摸查,是嚴防死守防止疫情蔓延的重點。如何提升效率、減輕基層社區(qū)工作人員的壓力,同時也幫助他們減少工作中交叉感染的風險?AI可以說幫上了大忙。
2月8日騰訊海納團隊上線了電子出入證功能,在疫情期間免費開放給全國所有小區(qū)使用。隨后海納團隊又推出“社區(qū)電子出入證+人臉識別門禁+無接觸自動體溫測量”一站式社區(qū)通行方案,并實時身份識別及預警記錄上報。
據(jù)不完全統(tǒng)計,截至2月18日,全國已有超過2000個小區(qū)通過海納配置和上線疫情防護菜單,與疫情相關(guān)的物業(yè)通知推送次數(shù)約1萬次,已觸達約730萬社區(qū)居民。
2月9日,《新聞聯(lián)播》對百度在疫情期間免費向全國疫情防控機構(gòu)開放的智能外呼平臺進行了報道。報道稱,百度的智能外呼平臺系統(tǒng)讓社區(qū)疫情防控效率提升。
百度智能外呼平臺可提供流動人員排查,本地居民排查/回訪,特定人群通知三大場景的外呼服務。
該平臺具有批量一對一電話呼叫能力,一秒能撥出1500個電話,可以通過定向或隨機發(fā)起撥入居民電話,自動詢問并采集疫情信息分析,并生成觸達統(tǒng)計報告,還可以對居民進行疾病患教及防控指導。
使用該平臺基層醫(yī)護人員不用上門排查,有效避免了感染風險。更重要的,在該系統(tǒng)的輔助下,社區(qū)減少了排查時間,提高了疫情防控效率。
目前,百度智能外呼平臺已經(jīng)在北京海淀上地街道辦、陜西西安、延安、上海寶山、浙江溫州瑞安市、福建福州倉山區(qū)等十幾個地區(qū)投入使用。
三、助力疫期生產(chǎn)生活學習穩(wěn)步恢復,穩(wěn)定經(jīng)濟發(fā)展
眼下這個時期首要考慮的還是對疫情的防控,但同時也要在有限條件內(nèi)盡最大程度不影響國民的正常工作、生活和學習。
自2月3日開始,不少企業(yè)就已選擇“云辦公”,把會議開在了釘釘、企業(yè)微信上。百度2月14日發(fā)布的《新型冠狀病毒肺炎搜索大數(shù)據(jù)報告-復工篇》顯示,近30天遠程辦公需求環(huán)比上漲663%,“云開工”成主流,“線上云辦公”以22%的比例成為中小企業(yè)近期最關(guān)注的內(nèi)容之一。
2月8日,釘釘企業(yè)復工平臺正式上線,該系統(tǒng)打通了員工健康打卡和企業(yè)復工申請,幫助企業(yè)管理者一站式完成員工健康情況每日收集和復工申請,深受企業(yè)歡迎。
除了釘釘、企業(yè)微信等大家常見的遠程辦公軟件,疫情期間,百度也正式開放了智能遠程辦公平臺百度Hi,并免費為湖北等疫區(qū)企業(yè)提供高清音視頻會議、企業(yè)云盤、企業(yè)IM和應用中心平臺等多項服務。
百度 Hi 企業(yè)智能遠程辦公平臺基于百度成熟的語音、視覺和機器學習等 AI 技術(shù),能夠支持50方在線高清語音電話、企業(yè)云盤加密傳輸、web 視頻會議等遠程辦公協(xié)同功能,具備智能、高效、穩(wěn)定的特點,24小時不間斷支持遠程辦公。
除了“云辦公”,疫情期間不同于以往,就以電費為例。
1 企業(yè)階段性停產(chǎn)基本電費仍要交,電費成本過高造成虧損;
2 疫情過后訂單量激增,各產(chǎn)線同時開工,負荷過滿,如何調(diào)控?
3 特殊時期嚴控成本,能否降低電費支出及運維人員開支,節(jié)省每月固定成本?
對此,百度針對性地推出了智能電費優(yōu)化服務——結(jié)合百度領(lǐng)先的行業(yè)及地域大數(shù)據(jù)、物聯(lián)網(wǎng)技術(shù)以及人工智能分析與預測算法,幫助制造類企業(yè)在零投入、零成本、零維護、零風險的情況下節(jié)省基本電費,并免費幫助企業(yè)逐步構(gòu)建綜合能源管理系統(tǒng),減少人員日常用能抄錄成本、指導工廠合理用能以達到真正的降本增效。
企業(yè)“云辦公”,學生“上網(wǎng)課”。在線教育在疫情期間一度成為學生群體的主要學習方式,2月17日,教育部推出的面向全國近1.8億中小學生、1千萬老師居家學習的“國家中小學網(wǎng)絡云平臺”正式開通。
而外界不知道的是,為了保證學生在線學習網(wǎng)絡的暢通,工信部部署百度等多家公司提供技術(shù)保障支持,協(xié)調(diào)7000臺云主機、90T帶寬,可供5000萬學生同時在線使用。
科大訊飛在疫情期間先后在湖北省武漢、襄陽、荊州等12個地級市免費提供了人工智能教育產(chǎn)品和服務。除了重點布局湖北省,訊飛還打造了不同區(qū)域的解決方案。目前,方案已經(jīng)應用在全國19個省31個區(qū)域。
四、支援一線防疫工作,智能機器人/無人車找到落地新場景
為了減少接觸頻次、面積,盡最大限度減小交叉感染的可能,疫情期間無人車、無人配送等黑科技產(chǎn)品成為疫情防控的最有效手段。
無人駕駛近年來一直是非常熱門的前沿技術(shù),而在疫情期間無人駕駛又成為最佳解決方案。為了應對疫情,2月10日,百度Apollo宣布將對服務疫情的企業(yè)免費開放低速微型車套件及自動駕駛云服務。
基于百度Apollo提供的技術(shù),今年2月伊始,新石器、智行者、悟牛智能、中科慧眼等Apollo生態(tài)合作伙伴陸續(xù)奔赴抗疫前線,為疫區(qū)人民提供提供自動駕駛噴灑消毒、送餐、疫情監(jiān)測等無人化服務。
疫情的黑云之下,“無人化服務”被外界視為阻斷疫情的有效手段,成為人民剛需。百度之外,普渡科技、高新興、賽特智能、高仙機器人、一清科技等企業(yè)也“不約而同”將旗下機器人發(fā)往疫區(qū),提供配送、消毒、檢測等服務。
此前我們曾介紹過獵戶星空為北京大學首鋼醫(yī)院和火神山醫(yī)院捐贈的智能機器人,以及普渡科技、鈦米等企業(yè)推出的不同類型智能機器人。
以獵戶星空為例,這家公司生產(chǎn)的一款智能遞送機器人,由自主導航模塊及運輸箱體組成,可根據(jù)醫(yī)院需求分別執(zhí)行遞送化驗單、藥物等工作,用機器人代替醫(yī)護過程中簡單但耗力的流程化工作,減輕醫(yī)務人員的工作量,避免醫(yī)護人員在遞送路上的感染可能。
在物流領(lǐng)域,疫情期間最惹人關(guān)注的恐怕就是京東物流旗下的無人快遞車了。尤其是頻繁被媒體報道的京東物流武漢仁和站,該配送站點距離武漢第九醫(yī)院這個疫區(qū)核心只有600米。疫情爆發(fā)后,這個站點幾乎支撐起了第九醫(yī)院醫(yī)療物資的配送工作,其中,無人車配送約占70%。
五、大數(shù)據(jù)分析助力政府、機構(gòu)宏觀疫情分析,為公眾提供服務和科普
疫情前期,對于所有人而言新冠病毒都是一個陌生的詞匯,由此引發(fā)了大量謠言、偽科學流傳在網(wǎng)絡,隨著科研人員逐步攻克病毒,外界對其的了解也在加深。不過,我們也不能忽視,大數(shù)據(jù)分析在其中起到的作用。
舉個例子,百度地圖在疫情期間推出的遷徙大數(shù)據(jù)平臺,通過疫期人流的大數(shù)據(jù)分析,在為公眾提供參考的同時,也為政府、科研機構(gòu)等掌握宏觀人員流動情況、進而相應進行疫情防控的部署和研究提供了輔助參考,可以說是本次抗擊疫情過程中相當亮眼的一大應用。
在面向大眾用戶層面,標記發(fā)熱門診和熱力圖,也是兩個非常貼心的功能。尤其是后者,熱力圖給出的城市當前人流量比較集中的地點,提醒用戶疫情期間盡量少出門或者改變出門計劃,防止交叉感染。
在對大眾普及病毒知識層面,大數(shù)據(jù)分析也發(fā)揮了很大作用。
令我印象深刻的是百度聯(lián)合果殼推出的搜索科普彩蛋,當用戶搜索野生動物或者野味時,一個特效彩蛋就會被立刻觸發(fā)。這一種野生動物的現(xiàn)狀、潛在危害、對于人類的積極意義、“不可食用”的標語等等提示信息,簡單幾秒就全部展現(xiàn)在面前,幫助你對它建立一個快速全面的認識。
還有在疫情早期,謠言眾多。百度利用大數(shù)據(jù)分析出國民最常搜索的問題,有針對性的聯(lián)合專家、機構(gòu)、醫(yī)生進行科普問答,某種程度上來說,這些權(quán)威、及時的信息披露緩解了人們對未知病毒的恐慌。
以上只是這次疫情中AI參與進去的一小部分,但我們看到無論是前端的疫苗研發(fā)還是后端的社區(qū)防控,AI作為一種高效、準確的防疫手段已經(jīng)起到了超出預期的實際價值。
從某種程度說,此次AI參與抗疫,是對其能力的一次綜合考驗,也是其在各個具體落地場景的一次大規(guī)模探索。
或許此前我們對AI的印象停留在黑科技、創(chuàng)新,并不知道在日常生活中還有如此多的應用。不過,可以預想的是,經(jīng)過此次疫情,無論是大眾、政府、機構(gòu)或是相關(guān)行業(yè),對于AI的認知將會進一步提升,這也會推動AI在未來更多領(lǐng)域中得到應用。
最后,我想借理查德?普雷斯頓在《血疫》中的一段話作為結(jié)尾,“埃博拉曾在這些房間里興起,閃現(xiàn)身影,進食,然后回歸森林。它還會回來的。”
不是我們戰(zhàn)勝了病毒,而是病毒放過了我們。
人類,要學會敬畏自然。