在應(yīng)用電源模塊常見(jiàn)的問(wèn)題中,降低負(fù)載端的紋波噪聲是大多數(shù)用戶都關(guān)心的。那么模塊的紋波噪聲該如何降低?下文為大家從紋波噪聲的波形、測(cè)試方式、模塊設(shè)計(jì)及應(yīng)用的角度出發(fā),闡述幾種有效降低輸出紋波噪聲的方法。
一、電源的紋波與噪聲介紹
紋波和噪聲即:直流電源輸出上疊加的與電源開(kāi)關(guān)頻率同頻的波動(dòng)為紋波,高頻雜音為噪聲。具體如圖1所示,頻率較低且有規(guī)律的波動(dòng)為紋波,尖峰部分為噪聲。
圖1
二、紋波噪聲的測(cè)試方法
對(duì)于中小微功率模塊電源的紋波噪聲測(cè)試,業(yè)內(nèi)主要采用平行線測(cè)試法和靠接法兩種。其中,平行線測(cè)試法用于引腳間距相對(duì)較大的產(chǎn)品,靠測(cè)法用于模塊引腳間距小的產(chǎn)品。
但不管用平行線測(cè)試法還是靠測(cè)法,都需要限制示波器的帶寬為20MHz。具體如圖2和圖3所示。
圖2 平行線測(cè)試法
注1:C1為,高頻電容容量為1μF;C2為鉭電容,容量為10μF。
注2:兩平行銅箔帶之間的距離為2.5mm,兩平行銅箔帶的電壓降之和應(yīng)小于輸出電壓的2%。
圖3靠測(cè)法
三、去除地線夾測(cè)試的區(qū)別
測(cè)試紋波噪聲需要把地線夾去掉,主要是由于示波器的地線夾會(huì)吸收各種高頻噪聲,不能真實(shí)反映電源的輸出紋波噪聲,影響測(cè)量結(jié)果。下面的圖4和圖5分別展示了對(duì)同一個(gè)產(chǎn)品,使用地線夾及取下地線夾測(cè)試的巨大差異。
圖4 使用地線夾測(cè)試-示波器垂直分辨率200mv/div
圖5 去除地線夾測(cè)試-示波器垂直分辨率50mv/div
四、設(shè)計(jì)上PCB布局的影響
好與壞的PCB布局,是設(shè)計(jì)上影響紋波噪聲的關(guān)鍵因素。差的PCB布局如圖6所示,變壓器輸出的地,直接通過(guò)過(guò)孔連到背部的地平面,地平面連接電源的輸出引腳。此布局在輸出5V/2A的負(fù)載下,實(shí)測(cè)電源尖峰達(dá)1.5V VP-P。變壓器上的噪聲沒(méi)有經(jīng)過(guò)輸出的濾波電容直接通過(guò)了輸出引腳,導(dǎo)致紋波噪聲很大。
圖6 差的PCB布局
如圖7 所示是比較好的PCB布局,調(diào)整了變壓器的位置,將變壓器輸出地通過(guò)兩個(gè)電容后,再回到地平面和輸出引腳相連。實(shí)測(cè)在相同5V/2A輸出的負(fù)載下,噪聲已降到60mV VP-P,差別顯著。
圖7 好的PCB布局
五、輸出濾波電容的影響
輸出濾波電容的容值、ESR對(duì)模塊輸出的紋波噪聲也有直接影響。按圖8所示的P0505FLS-1W測(cè)試紋波噪聲。
外部不加外接電容,測(cè)試輸出的紋波噪聲,如圖9所示,約為52mV。同樣的輸入、負(fù)載條件下,電源的輸出端放置MLCC,實(shí)測(cè)電源輸出的紋波噪聲降到不到36mV。
圖8測(cè)試用圖
圖9 無(wú)外接電容
圖10 外加電容
實(shí)際應(yīng)用時(shí),電容除容量、ESR外,建議負(fù)載端的電容在回到電源之前,先匯集到輸出電容,經(jīng)過(guò)電容濾波后,再回到電源,從而有效降低紋波噪聲對(duì)電路的影響。如圖11所示。
圖11 外部電容的位置
六、電感對(duì)紋波噪聲的影響
電感的感量及寄生電容對(duì)紋波噪聲的影響同樣顯著。一般地,感量大時(shí)對(duì)紋波抑制作用明顯,寄生電容小的電感對(duì)噪聲抑制效果好。以對(duì)紋波抑制為例,測(cè)試對(duì)電源輸出紋波的影響,測(cè)試圖如圖12所示。
圖12 測(cè)試電感濾波效果用例
根據(jù)圖12,我們先人為的把產(chǎn)品內(nèi)部的濾波電感短路,只用電容濾波,測(cè)得紋波噪聲如圖13所示,紋波峰峰值約50mV。
圖13人為短路內(nèi)部濾波電感的紋波噪聲圖
下一步,在電源外部增加一個(gè)LC電路,在相同輸入、負(fù)載條件下,重測(cè)紋波噪聲圖,如圖14所示,紋波已接近直線,非常小。
圖14 外加LC的紋波噪聲圖
七、非紋波的震蕩處理
前面介紹了紋波是與開(kāi)關(guān)電源的工作頻率相關(guān),但是還有另外一種震蕩是與負(fù)載的工作頻率相關(guān)的,如圖15所示。
圖15 負(fù)載工作周期大約1.1s
DC-DC電源模塊給MCU、晶振、WiFi模塊等電路同時(shí)供電,WIFI模塊會(huì)繼續(xù)周期性的掃描,掃描開(kāi)啟時(shí),電源模塊電流會(huì)增加,使得模塊輸出電壓瞬間會(huì)有一個(gè)下降;同理掃描關(guān)斷時(shí),模塊輸出電壓會(huì)上升突變。
這種模塊輸出電壓的突變,并不是產(chǎn)品本身的紋波噪聲,而是由于負(fù)載電流的突變,釋放了電容電壓。減小這類(lèi)紋波的最好辦法,是在負(fù)載前段增加π濾波器。
以上簡(jiǎn)單從紋波噪聲的圖例、測(cè)試方法開(kāi)始,描述從電源設(shè)計(jì)、外部電路應(yīng)用出發(fā),結(jié)合實(shí)際測(cè)試比較幾種降低紋波噪聲的方法。實(shí)際的工程應(yīng)用中還需考慮電容、電感的負(fù)載效應(yīng)、自激影響等,需再做深究。
如果在電源模塊選型中,選用低紋波噪聲的電源模塊,可省去外圍電路的搭建。致遠(yuǎn)電子自主研發(fā)、生產(chǎn)的隔離電源模塊已有近20年的行業(yè)積累,打造自主電源IC,推出P系列全工況優(yōu)選型DC-DC電源,結(jié)合合理的PCB設(shè)計(jì)以及測(cè)試規(guī)范,較傳統(tǒng)設(shè)計(jì),紋波噪聲低至50mV,為用戶打造高可靠性供電環(huán)境。并且模塊滿載效率高達(dá)85%,輕載效率仍高至79%,保證全工況高效供電,有效降低電源溫升,最大程度保證用戶產(chǎn)品的可靠性,是板級(jí)直流供電的理想解決方案。