《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 嵌入式技術(shù) > 設(shè)計(jì)應(yīng)用 > 礦山物聯(lián)網(wǎng)時(shí)間同步系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
礦山物聯(lián)網(wǎng)時(shí)間同步系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)
2017年電子技術(shù)應(yīng)用第1期
魏亞敏1,2,李 軼1,2,張 申2,張 然1,2
1.中國(guó)礦業(yè)大學(xué) 信息與電氣工程學(xué)院,江蘇 徐州221008; 2.中國(guó)礦業(yè)大學(xué) 物聯(lián)網(wǎng)(感知礦山)研究中心,江蘇 徐州221008
摘要: 基于現(xiàn)有煤礦井下物聯(lián)網(wǎng)各業(yè)務(wù)對(duì)不同精度的時(shí)間同步性能的需求,提出了一種應(yīng)用于礦山物聯(lián)網(wǎng)環(huán)境下的時(shí)間同步系統(tǒng)方案及實(shí)現(xiàn)。時(shí)間同步硬件設(shè)備通過(guò)采用STM32F407的片上系統(tǒng)、LWIP及PTPd協(xié)議棧實(shí)現(xiàn),并采用噪聲濾波方法優(yōu)化了資源占用。實(shí)驗(yàn)結(jié)果表明,提出的設(shè)計(jì)方案穩(wěn)定可靠,且在背靠背狀態(tài)下可達(dá)到納秒級(jí)的同步精度。
中圖分類號(hào): TP368
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.2017.01.021
中文引用格式: 魏亞敏,李軼,張申,等. 礦山物聯(lián)網(wǎng)時(shí)間同步系統(tǒng)設(shè)計(jì)與實(shí)現(xiàn)[J].電子技術(shù)應(yīng)用,2017,43(1):81-83.
英文引用格式: Wei Yamin,Li Yi,Zhang Shen,et al. Design and implementation of time synchronization system of mine IoT[J].Application of Electronic Technique,2017,43(1):81-83.
Design and implementation of time synchronization system of mine IoT
Wei Yamin1,2,Li Yi1,2,Zhang Shen2,Zhang Ran1,2
1.School of Information and Electrical Engineering,China University of Mining and Technology,Xuzhou 221008,China; 2.Internet of Things Perception Mine Research Center,China University of Mining and Technology,Xuzhou 221008,China
Abstract: According to the requirement of time synchronization of different accuracy for the existing business of underground mine, in this paper, a new design of time synchronization system based on mine Internet of Things technology is proposed. The synchronization hardware device is implemented by using STM32F407 chip system, lightweight TCP/IP stack(LWIP) and PTP daemon, and optimized by the method of noise filtering. The experimental results demonstrate that the proposed scheme is stable and reliable, and can reach nanosecond synchronization precision in back to back state.
Key words : mine IoT;time synchronization;SoC;LWIP;PTPd protocol stack

0 引言

    礦山物聯(lián)網(wǎng)要進(jìn)行分布式測(cè)量,生產(chǎn)環(huán)境需通過(guò)多樣泛在式的傳感器對(duì)礦山環(huán)境、生產(chǎn)設(shè)備健康、工作人員安全等進(jìn)行實(shí)時(shí)監(jiān)測(cè)、感知、保障,實(shí)現(xiàn)礦井及時(shí)定位、事故問(wèn)題反應(yīng)[1]等功能。而這些業(yè)務(wù)的實(shí)現(xiàn)和正常工作,必須要保證各傳感器或節(jié)點(diǎn)間具有準(zhǔn)確、統(tǒng)一的時(shí)鐘同步。物聯(lián)網(wǎng)時(shí)間同步概念的提出,可充分滿足礦井系統(tǒng)中對(duì)生產(chǎn)自動(dòng)化和信息化的高標(biāo)準(zhǔn)要求[2]。本文研究設(shè)計(jì)了一種礦山物聯(lián)網(wǎng)時(shí)間同步方案,并采用現(xiàn)今具有較高性價(jià)比的、基于STM32F407的IEEE 1588方案實(shí)現(xiàn),極好地滿足了各種應(yīng)用要求,尤其在中高端工業(yè)控制的分布式應(yīng)用中具有較高的市場(chǎng)價(jià)值和工程意義。

1 時(shí)間同步系統(tǒng)

1.1 系統(tǒng)方案

    針對(duì)已有的礦山網(wǎng)絡(luò)環(huán)境,為了減少網(wǎng)絡(luò)的重復(fù)建設(shè),希望在現(xiàn)有的主干網(wǎng)絡(luò)環(huán)境下實(shí)現(xiàn)時(shí)間同步[3]。因此采用了如下時(shí)間同步系統(tǒng)方案。

    井上父時(shí)鐘通過(guò)GPS或北斗模塊與標(biāo)準(zhǔn)時(shí)間同步,獲得當(dāng)前的精確時(shí)間[4];井下時(shí)間同步節(jié)點(diǎn)通過(guò)支持交換機(jī)與子網(wǎng)中的父時(shí)鐘進(jìn)行時(shí)間同步,獲得當(dāng)前子網(wǎng)內(nèi)的精確時(shí)間,完成時(shí)間同步;井下時(shí)間同步節(jié)點(diǎn)完成時(shí)間同步后開(kāi)始進(jìn)行數(shù)據(jù)采集,將采集到的數(shù)據(jù)加上時(shí)間戳并進(jìn)行數(shù)據(jù)壓縮后通過(guò)數(shù)據(jù)傳輸子網(wǎng)傳輸?shù)綌?shù)據(jù)中心,從而實(shí)現(xiàn)全網(wǎng)數(shù)據(jù)的精確時(shí)間同步。圖1為時(shí)間同步系統(tǒng)方案圖。

qrs1-t1.gif

1.2 設(shè)計(jì)實(shí)現(xiàn)

    IEEE1588協(xié)議采用軟硬件結(jié)合的方式,可實(shí)現(xiàn)高精度的時(shí)間同步[5]。其精度可優(yōu)于NTP(Network Time Protocol),而且達(dá)到次毫秒級(jí)同步精度[6]的同時(shí)對(duì)系統(tǒng)資源的耗費(fèi)并不很高。IEEE1588協(xié)議針對(duì)網(wǎng)絡(luò)化、本地化的系統(tǒng)設(shè)計(jì),適用于分布式工業(yè)網(wǎng)絡(luò)的各種應(yīng)用。IEEE1588協(xié)議可基于標(biāo)準(zhǔn)TCP/IP協(xié)議棧設(shè)計(jì),這極大地?cái)U(kuò)展了其應(yīng)用范圍[7]。

    IEEE1588協(xié)議實(shí)現(xiàn)利用STM32F407提供的硬件開(kāi)發(fā)功能開(kāi)發(fā)驅(qū)動(dòng)并編寫(xiě)IEEE1588協(xié)議軟件部分,以此實(shí)現(xiàn)整體IEEE1588協(xié)議棧。結(jié)構(gòu)圖如圖2。

qrs1-t2.gif

    TCP/IP是IEEE1588協(xié)議報(bào)文傳輸?shù)妮d體,所以必須選擇合適的通信載體,即合適的TCP/IP協(xié)議棧。本文選擇Lwip協(xié)議棧[8]

2 時(shí)間同步節(jié)點(diǎn)硬件總體方案

    本文以微控制器STM32F407為硬件系統(tǒng)核心,采用以太網(wǎng)物理層收發(fā)器DP83848進(jìn)行底層網(wǎng)絡(luò)通信,實(shí)現(xiàn)系統(tǒng)節(jié)點(diǎn)的硬件結(jié)構(gòu)。硬件總體框架圖如圖3所示。

qrs1-t3.gif

    從圖3可以看出,硬件系統(tǒng)由主芯片STM32F407和一些外設(shè)接口構(gòu)成,外設(shè)接口主要包括以太網(wǎng)接口、串口等,這些接口負(fù)責(zé)對(duì)外部信號(hào)的發(fā)送或者接收。測(cè)試時(shí)可通過(guò)觀察輸出的PPS脈沖分析同步精度。電源模塊為系統(tǒng)中所有模塊提供動(dòng)力。串口用于接收用戶配置的參數(shù)并輸出當(dāng)前系統(tǒng)信息,主要用于系統(tǒng)監(jiān)控和調(diào)試。以太網(wǎng)接口用于TCP/IP通信,完成對(duì)網(wǎng)絡(luò)中數(shù)據(jù)的接收和發(fā)送。

3 時(shí)間同步節(jié)點(diǎn)軟件設(shè)計(jì)

3.1 IEEE1588同步原理

    時(shí)間同步系統(tǒng)中主時(shí)鐘、從時(shí)鐘相互發(fā)送各類報(bào)文實(shí)現(xiàn)了IEEE1588協(xié)議的精確時(shí)間同步。IEEE1588同步過(guò)程可以被分為偏移測(cè)量和延時(shí)測(cè)量?jī)蓚€(gè)階段[9,10]

    toffset表示主時(shí)鐘與從時(shí)鐘之間的偏差,tmtsdelay表示報(bào)文傳輸中主時(shí)鐘到從時(shí)鐘的延遲,tstmdelay表示報(bào)文傳輸中從時(shí)鐘到主時(shí)鐘的延遲。時(shí)間關(guān)系為:

qrs1-gs1-4.gif

3.2 協(xié)議實(shí)現(xiàn)流程設(shè)計(jì)

    本文采用的時(shí)間同步協(xié)議流程如圖4所示。

qrs1-t4.gif

    在該時(shí)間同步協(xié)議流程中,優(yōu)化去除原有時(shí)間同步協(xié)議流程中的最佳主時(shí)鐘算法,默認(rèn)井上控制時(shí)鐘為主時(shí)鐘,井下時(shí)鐘為從時(shí)鐘,以節(jié)約系統(tǒng)運(yùn)行時(shí)間。在本地時(shí)鐘接收到有效同步報(bào)文后,直接對(duì)報(bào)文進(jìn)行解包,解包之后判斷是否接收超時(shí),未超時(shí)則繼續(xù)接收跟隨報(bào)文,超時(shí)則重新接收同步報(bào)文。

4 優(yōu)化設(shè)計(jì)以及系統(tǒng)測(cè)試

4.1 優(yōu)化設(shè)計(jì)

    通過(guò)前期對(duì)協(xié)議棧內(nèi)各函數(shù)運(yùn)行時(shí)間的分析發(fā)現(xiàn),協(xié)議棧內(nèi)時(shí)鐘伺服函數(shù)運(yùn)行時(shí)間最長(zhǎng),占用CPU資源較多。針對(duì)此問(wèn)題,提出將協(xié)議棧內(nèi)計(jì)算一路延遲的IIR濾波器、主從偏差FIR濾波器及PI控制器采用STM32F407內(nèi)部的DSP模塊加速進(jìn)行處理的方法[11]

    圖5為未優(yōu)化伺服函數(shù)的程序CPU資源占用率與優(yōu)化伺服函數(shù)后程序的CPU資源占用率對(duì)比,CPU資源占用率減少了16.28%。

qrs1-t5.gif

4.2 系統(tǒng)測(cè)試

    系統(tǒng)測(cè)試連接方案如圖6所示,將STM32開(kāi)發(fā)板的主機(jī)、從機(jī)連接交換機(jī),計(jì)算機(jī)連接交換機(jī)。通過(guò)觀察示波器上從STM32上輸出的PPS信號(hào),觀察主從設(shè)備是否同步以及同步誤差。

qrs1-t6.gif

    在系統(tǒng)實(shí)物連接中,利用示波器觀察脈沖同步波形,將主時(shí)鐘PTP秒脈與從時(shí)鐘接收到的脈沖進(jìn)行比較,圖7為多次同步誤差分析圖。由圖可知,主、從機(jī)在達(dá)到穩(wěn)定同步后,同步誤差可在較長(zhǎng)時(shí)間控制于100 ns之內(nèi)。

qrs1-t7.gif

5 結(jié)論

    時(shí)間同步是礦山物聯(lián)網(wǎng)分布式測(cè)量、定位、事故救援各系統(tǒng)協(xié)同運(yùn)轉(zhuǎn)的關(guān)鍵。本文提出了井下時(shí)間同步系統(tǒng)方案及實(shí)現(xiàn),并通過(guò)對(duì)噪聲進(jìn)行濾波的方法解決了時(shí)間同步伺服函數(shù)對(duì)系統(tǒng)資源占用率較高的問(wèn)題。實(shí)驗(yàn)測(cè)試表明,該設(shè)計(jì)同步精度高,工作穩(wěn)定可靠,可擴(kuò)展性強(qiáng),能夠較好地滿足現(xiàn)有礦山物聯(lián)網(wǎng)應(yīng)用對(duì)時(shí)間同步的需求,具備較高的實(shí)用和推廣價(jià)值。

參考文獻(xiàn)

[1] 張申,丁恩杰,徐釗,等.物聯(lián)網(wǎng)與感知礦山專題講座之二——感知礦山與數(shù)字礦山、礦山綜合自動(dòng)化[J].工礦自動(dòng)化,2010(11):129-132.

[2] 陳珍萍,黃友銳,唐超禮,等.物聯(lián)網(wǎng)感知層低能耗時(shí)間同步方法研究[J].電子學(xué)報(bào),2016(1):193-199.

[3] 王盼,張鋒,吳海,等.礦井節(jié)點(diǎn)地震儀低功耗時(shí)間同步系統(tǒng)設(shè)計(jì)[J].煤炭技術(shù),2015(1):263-265.

[4] 趙龍,李本喜,王皓,等.GPS精密授時(shí)系統(tǒng)在煤礦微震監(jiān)測(cè)定位中的應(yīng)用[J].黑龍江大學(xué)自然科學(xué)學(xué)報(bào),2005(6):819-821.

[5] 陳大峰,白瑞林,鄒駿宇.嵌入式設(shè)備的精確時(shí)鐘同步技術(shù)的研究與實(shí)現(xiàn)[J].計(jì)算機(jī)工程與應(yīng)用,2013(4):82-86.

[6] 徐立,趙平.基于IEEE 1588精確時(shí)鐘同步軟件實(shí)現(xiàn)[J].現(xiàn)代電子技術(shù),2010(24):47-50.

[7] 王力生,梅巖,曹南洋.輕量級(jí)嵌入式TCP/IP協(xié)議棧的設(shè)計(jì)[J].計(jì)算機(jī)工程,2007(2):246-248.

[8] 孫樂(lè)鳴,江來(lái),代鑫.嵌入式TCP/IP協(xié)議棧LWIP的內(nèi)部結(jié)構(gòu)探索與研究[J].電子元器件應(yīng)用,2008(3):79-82.

[9] 庾智蘭,李智.IEEE1588精密時(shí)鐘同步協(xié)議的分析與實(shí)現(xiàn)[J].電子測(cè)量技術(shù),2009(4):56-58.

[10] 桂本烜,馮冬芹,褚健,等.IEEE1588的高精度時(shí)間同步算法的分析與實(shí)現(xiàn)[J].工業(yè)儀表與自動(dòng)化裝置,2006(4):20-23.

[11] 張文亮,田沛,劉暉,等.基于FreeRTOS的lwip協(xié)議棧的移植與測(cè)試[J].自動(dòng)化技術(shù)與應(yīng)用,2015(11):25-29.



作者信息:

魏亞敏1,2,李  軼1,2,張  申2,張  然1,2

(1.中國(guó)礦業(yè)大學(xué) 信息與電氣工程學(xué)院,江蘇 徐州221008;

2.中國(guó)礦業(yè)大學(xué) 物聯(lián)網(wǎng)(感知礦山)研究中心,江蘇 徐州221008)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。