《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計(jì)應(yīng)用 > 平面陣天線柵瓣性能分析
平面陣天線柵瓣性能分析
2014年電子技術(shù)應(yīng)用第3期
劉 玲, 劉陸軍, 曾 浩
(重慶大學(xué) 通信工程學(xué)院, 重慶400044)
摘要: 在相控陣天線設(shè)計(jì)中,增加陣元間距能提高天線分辨率,但天線波束會(huì)出現(xiàn)柵瓣,柵瓣多值性導(dǎo)致目標(biāo)位置模糊,接收機(jī)錯(cuò)誤跟蹤。因此,陣元間距的合理取值是相控陣天線設(shè)計(jì)的重要內(nèi)容。首先建立了陣列天線方向圖函數(shù)模型,然后推導(dǎo)出矩形陣和三角陣柵瓣出現(xiàn)的位置及不出現(xiàn)柵瓣時(shí)陣元間距的取值范圍,最后通過MATLAB仿真來驗(yàn)證結(jié)論的正確性。
關(guān)鍵詞: 柵瓣 方向圖 陣元間距
中圖分類號(hào): TN820
文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2014)03-0104-04
Performance analysis of grating lobes about planar array antenna
Liu Ling, Liu Lujun, Zeng Hao
College of Communication Engineering, Chongqing University, Chongqing 400044, China
Abstract: In the design of phased array antenna, increasing array element spacing can improve the resolution of antenna. However, antenna beam will appear grating lobes in this case. The multiple values of grating lobe leads to fuzzy target location and receiver bug tracking. Therefore, the reasonable array element spacing is important in the design of phased array antenna. Through of establishment for beam pattern function of array antenna, the location of the grating lobe and the range of array element spacing are obtained, where the grating lobes do not appear. These results are used for uniform linear array, rectangular and triangular planar array. The MATLAB simulation proves that these conclusions are correct.
Key words : grating lobe; radiation pattern; element spacing

  目前,相控陣天線已經(jīng)廣泛應(yīng)用于軍事、民用領(lǐng)域,它通過改變陣元激勵(lì)信號(hào)的相位來改變天線方向圖波束指向。天線的輻射能力可以用方向圖函數(shù)來描述,方向圖的取值與陣元間距有關(guān),增大陣元間距即增加了天線孔徑長度,可使天線波束變窄,提高天線分辨率。但是對(duì)于固定的工作頻率和掃描角,若陣元間距過大,陣列天線掃描時(shí)的輻射場,除主瓣以外在其他方向會(huì)因場強(qiáng)同相疊加形成強(qiáng)度與主瓣相仿的輻射瓣,稱之為柵瓣。柵瓣占據(jù)了輻射能量,使天線增益降低。從柵瓣“看”到的目標(biāo)與主瓣“看”到的目標(biāo)易于混淆,導(dǎo)致目標(biāo)位置模糊。干擾信號(hào)從柵瓣進(jìn)入接收機(jī)將影響通信系統(tǒng)的正常工作[1]。因此,應(yīng)合理地選擇相控陣天線的陣元間距避免出現(xiàn)柵瓣。許多文章只注重對(duì)線陣柵瓣進(jìn)行分析[2-3],而很少分析平面陣柵瓣問題。本文對(duì)平面陣天線柵瓣性能進(jìn)行分析并通過仿真驗(yàn)證。

1 陣列天線方向圖函數(shù)模型

  單個(gè)天線的方向性是有限的,可以將若干個(gè)單元天線按一定方式排列組合形成天線陣列來加強(qiáng)天線的定向輻射能力。平面陣天線陣元有不同的排列方式,常見的陣型有矩形排列平面陣和三角形排列平面陣。無論哪種陣型,其方向圖函數(shù)模型都是相同的。

  為簡化分析,本文做以下假設(shè)[4]:(1)所有陣元為均勻幅度加權(quán),即信號(hào)到達(dá)不同陣元時(shí)沒有幅度變化;(2) 陣元都是相同的全向天線且各陣元之間無互耦;(3)所有入射信號(hào)均為遠(yuǎn)場信號(hào),以平面波波前到達(dá)陣列;(4)入射到陣列上的信號(hào)帶寬遠(yuǎn)小于信號(hào)載波頻率。

Image 001.jpg

  一個(gè)陣元構(gòu)成的陣列如圖1所示。圖中8_EZ(AA8VA%SQTYPB(H[S9P.png為方位角,取值范圍為0~2,8_EZ(AA8VA%SQTYPB(H[S9P.png為俯仰角,取值范圍為0~0.5。如果用矢量a表示信號(hào)來向,pl表示第l個(gè)陣元坐標(biāo),則第l個(gè)陣元接收信號(hào)相對(duì)于原點(diǎn)陣元接收信號(hào)的時(shí)延為l=aTpl/c,其中,c為光速[5]。

  46YRI_7O5X5A4P5]23HOION.png

  則第l個(gè)陣元接收信號(hào)相對(duì)于原點(diǎn)陣元接收信號(hào)的相位差為l=kTpl,此時(shí)信號(hào)方向矢量為方位角和俯仰角的函數(shù),可表示為:

  3W1H(@VB[EKMZ_{IPP`WWYW.png

  在數(shù)字化實(shí)現(xiàn)的相控陣加權(quán)中,權(quán)矢量等于期望信號(hào)的方向矢量:

  937R_6_U4K]~W4}]%Y9045Q.png

  其中,14IXS7Z{HP~KIA)WLQX@ZTN.png0和?YUF3JOXHCW%AKNVAL`(VJ3H.png0分別為天線波束最大指向的俯仰角與方位角。

  根據(jù)陣列天線方向圖乘積定理,方向圖等于陣元因子pE1SSE{]C0S)%PLBVSW~8F)}T.png與陣元因子pA1SSE{]C0S)%PLBVSW~8F)}T.png二者的乘積,即[6]:

  N0D@(~GGWWYVOHTAPKC9}50.png

  因陣元都是相同的全向天線,所以場強(qiáng)方向圖為:

  WWQ[I13F%CVEBO)[V@PO90E.png

  式中,符號(hào)‖‖為模值。

2 平面陣列天線柵瓣性能分析

  2.1 矩形排列平面陣


Image 002.jpg


  等間距矩形陣天線示意圖如圖2所示,一個(gè)共有M×N個(gè)天線單元的天線陣列位于xoy平面上,天線單元沿x和y方向的間距分別為dx和dy。

  為簡化分析本文做以下代換:

  56@{L28(W4BBLZ245{MJDND.png

  根據(jù)式(5)得知矩形排列平面陣的權(quán)矢量為:

  ]~C8ZSVEG`O}`9}{PM6SQ`9.png

  令

  Tx=tx-tx0, Ty=ty-ty0

  因不考慮幅度加權(quán),則根據(jù)式(7)可得矩形陣天線的方向圖函數(shù)[7-9]:

  ZAN{)Q({]HQQ5S1V)AL805B.png

  由上式可知,矩形陣天線方向圖可以看成兩個(gè)線陣天線方向圖的乘積,矩形陣天線方向圖要取得最大值必須滿足以下條件:

  7E5IMOZR9P4WDJ859E@F3CP.png

  式中p和q為整數(shù)。

  由式(10)可得在球坐標(biāo)系(?茲,?漬)中的主瓣、柵瓣位置滿足以下公式:

  BGM(Q_Y6TI91~K@4J}N5K1X.png

  GZ$T(E$}FHM%W4C5W0Z7~65.png

  4W8CA(Q6RW282ZH0`SV]L)O.png

  2.2 三角形排列平面陣


Image 003.jpg

  三角形排列平面陣可以看成兩個(gè)矩形陣交錯(cuò)排列之和[10],如圖3所示。天線陣列位于xoy平面上,為了便于區(qū)分,兩個(gè)矩形陣列的陣元分別用黑色圓點(diǎn)和黑色正方形表示。兩矩形陣沿x和y方向的間距分別為2dx和2dy,亦即相鄰兩陣元之間沿x方向的距離為dx,沿y方向的距離為dy。若dx=dy,則三角形為等腰直角三角形;若dy=dx,則三角形為等邊三角形。

  由于這兩個(gè)矩形陣的參考點(diǎn)在x軸方向與y軸方向的位置偏差分別為dx和dy,故整個(gè)陣列的方向圖函數(shù)可表示為:

  VJ%BNMKQ}({R@4AH`MCMT~I.png

  因此,三角形排列平面陣的方向圖取最大值取決于以下兩個(gè)條件:

  (1) 滿足式

  [J($83XSOWTR@}[XZIQI31M.png

  式中p和q為整數(shù)。

  (2) 滿足p+q=偶數(shù)。

  若p+q=奇數(shù),則由式(14)可知綜合因子方向圖B11SSE{]C0S)%PLBVSW~8F)}T.png等于0,根據(jù)式(13)由方向圖乘積定理可得整個(gè)三角形陣列的方向圖函數(shù)B1SSE{]C0S)%PLBVSW~8F)}T.png也等于0,不會(huì)出現(xiàn)最大值。若p+q=偶數(shù),綜合因子方向圖B11SSE{]C0S)%PLBVSW~8F)}T.png)取最大值,則整個(gè)三角形陣列的方向圖函數(shù)1SSE{]C0S)%PLBVSW~8F)}T.png將取最大值。

  由以上分析可知,在球坐標(biāo)系1SSE{]C0S)%PLBVSW~8F)}T.png中的主瓣、柵瓣位置滿足公式:

  ZZ[K$[}J987N2{2]%4X4S44.png

  當(dāng)可知T平面上的點(diǎn)恰好就是球坐標(biāo)系1SSE{]C0S)%PLBVSW~8F)}T.png中單位球面上的點(diǎn)在T平面上的投影。因‖T‖=|sin14IXS7Z{HP~KIA)WLQX@ZTN.png|,在T平面單位圓以內(nèi)的區(qū)域滿足‖T‖=|sin14IXS7Z{HP~KIA)WLQX@ZTN.png|≤1,即對(duì)應(yīng)球坐標(biāo)系1SSE{]C0S)%PLBVSW~8F)}T.png,此時(shí)波束位于可見區(qū),稱為實(shí)空間。單位圓以外的區(qū)域稱為虛空間,即不可見區(qū)。對(duì)于相控陣天線要求實(shí)空間內(nèi)方向圖只有一個(gè)最大值,即主瓣。相控陣天線波束處于掃描狀態(tài)時(shí),在T平面上表現(xiàn)為主瓣從原點(diǎn)到T0點(diǎn)的平移,且所有的柵瓣亦做相同的平移。

Image 004.jpg

  利用方向余弦平面Tx-Ty來描述天線柵瓣特性,則三角形排列平面陣天線柵瓣在Tx-Ty平面上的位置及其移動(dòng)如圖4所示。從圖中可看出波束掃描時(shí)要想在可見,要使空間不出現(xiàn)柵瓣,須滿足Tx-Ty平面上柵瓣與主瓣間的最小距離大于1+sin14IXS7Z{HP~KIA)WLQX@ZTN.png0[11]。

  對(duì)于等腰直角三角形陣列,不出現(xiàn)柵瓣的條件為:

  _C(NSBW(GBP6{]0TWH~G{OK.png

3 仿真結(jié)果及分析

  3.1 矩形排列平面陣

  )0G_U6EMLKOE3~94S8$_JY1.png出現(xiàn)多個(gè)柵瓣,柵瓣位置也可由式(11)驗(yàn)證。綜合圖5、圖6和圖7可知隨著陣元間距的增大,天線波束逐漸變窄,柵瓣個(gè)數(shù)增加。

Image 005.jpg

  3.2 三角形排列平面陣

  以等腰直角三角形為例,設(shè)定天線波束最大指向角為14IXS7Z{HP~KIA)WLQX@ZTN.png0=0、8_EZ(AA8VA%SQTYPB(H[S9P.png0=0,天線陣元數(shù)為18,根據(jù)式(19)得出等腰直角三角形排列平面陣不出現(xiàn)柵瓣的條件為dx<0.707FS$A(2{50HG`[1XT$G1W%4D.png、dy<0.707FS$A(2{50HG`[1XT$G1W%4D.png。首先,圖8顯示時(shí)天線波束沒有柵瓣;其次,由式(18)可計(jì)算出dx,dy=0.707FS$A(2{50HG`[1XT$G1W%4D.png時(shí)柵瓣的位置:時(shí)天線波束出現(xiàn)多個(gè)柵瓣,柵瓣位置也可由式(18)驗(yàn)證。綜合圖8、圖9和圖10可知,隨著陣元間距的增大,天線波束逐漸變窄,柵瓣個(gè)數(shù)增加。

  本文根據(jù)相控陣天線原理推導(dǎo)出平面陣列天線方向圖出現(xiàn)柵瓣的位置與波長、陣元間距d以及波束指向(14IXS7Z{HP~KIA)WLQX@ZTN.png0,8_EZ(AA8VA%SQTYPB(H[S9P.png0)的數(shù)學(xué)關(guān)系以及不出現(xiàn)柵瓣的陣元間距的取值范圍,然后運(yùn)用MATLAB仿真進(jìn)行驗(yàn)證。仿真結(jié)果表明,當(dāng)工作頻率以及波束指向確定之后,只要調(diào)整陣元間距使其在不出現(xiàn)柵瓣的取值范圍內(nèi),就可有效避免天線方向圖出現(xiàn)柵瓣。仿真結(jié)果驗(yàn)證了理論推導(dǎo)的正確性,對(duì)工程應(yīng)用具有指導(dǎo)意義。

參考文獻(xiàn)

  [1] 束咸榮,何炳發(fā),高鐵.相控陣?yán)走_(dá)天線[M]. 北京:國防工業(yè)出版社,2007:16-17.

  [2] WOOH S C, SHI Y. A Simulation study of the beamsteering characteristics for linear phased arrays[J]. Journal of Nondestructive Evaluation, 1999,18(2):39-42.

  [3] ABDEL M. Grating lobe suppression in uniformly spacedlinear phased arrays[C].National Radio Science Conference. New Cairo, 2009:1-10.

  [4] 付曉蕾.智能天線DOA估計(jì)及自適應(yīng)波束形成技術(shù)研究[D].重慶:重慶大學(xué),2007.

  [5] 劉玲,劉曉明,曾浩.基于MATLAB的陣列信號(hào)處理仿真方法[J].系統(tǒng)仿真學(xué)報(bào),2008,20(13):3548-3549.

  [6] Lu Bao, Gong Shuxi, Zhang Shuai, et al. Optimum spatial arrangement of array elements for suppression of grating-lobes of radar cross section[J]. IEEE Antennas and Wire-less Propagation Letters, 2010(9):114-117.

  [7] 陳志杰,李永禎,戴幻堯. 相控陣天線方向圖的建模與實(shí)時(shí)仿真方法[J].計(jì)算機(jī)仿真,2011,28(3):31-35.

  [8] 鄭美燕, 陳客松. 基于增廣矩陣束方法的平面天線陣列綜合[J]. 電子技術(shù)應(yīng)用,2012,38(12):101-102.

  [9] WHEELER H A. The grating-lobe series for the Imped-ance variation in a planar phased-array antenna[J]. IEEE Transactions on Antennas and Propagation, 1966,14(6): 707-714.

  [10] 張光義.相控陣?yán)走_(dá)原理[M].北京:國防工業(yè)出版社,2009.

  [11] HANSEN R C. Phased array antennas[M]. New Jersey: John Wiley & Sons, Inc., 2009.


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。