《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 電源技術(shù) > 設(shè)計(jì)應(yīng)用 > 基于滑動(dòng)平均的鋰電池關(guān)鍵參量檢測(cè)方法研究
基于滑動(dòng)平均的鋰電池關(guān)鍵參量檢測(cè)方法研究
2015年電子技術(shù)應(yīng)用第3期
王順利1,尚麗平1,李占鋒2,鄧 琥1,胡曉敏1
1.西南科技大學(xué) 信息工程學(xué)院,四川 綿陽621010; 2.西南科技大學(xué) 制造科學(xué)與工程學(xué)院,四川 綿陽621010
摘要: 針對(duì)機(jī)載鋰電池應(yīng)用中的安全保障問題,提出了一種基于滑動(dòng)平均的關(guān)鍵過程參量檢測(cè)新方法。該方法通過滑動(dòng)平均處理,實(shí)現(xiàn)對(duì)機(jī)載鋰電池應(yīng)用過程中的安全實(shí)時(shí)檢測(cè)。實(shí)驗(yàn)結(jié)果表明,該方法能夠?qū)崿F(xiàn)對(duì)機(jī)載鋰電池關(guān)鍵參量20 ms循環(huán)周期實(shí)時(shí)檢測(cè),單體電壓檢測(cè)精度高于1‰FS,總電壓檢測(cè)精度高于5‰FS,加熱與放電電流檢測(cè)精度高于5‰FS,實(shí)時(shí)保護(hù)時(shí)間為50 ms。提出的關(guān)鍵參量實(shí)時(shí)檢測(cè)方法具有較高的穩(wěn)定性,能夠有效保證鋰電池組應(yīng)用中的可靠性,該方法的提出能夠?qū)︿囯姵亟M的安全使用提供技術(shù)和方法參考。
中圖分類號(hào): TP302.1
文獻(xiàn)標(biāo)識(shí)碼: A
文章編號(hào): 0258-7998(2015)03-0141-04
Lithium battery key parameter detection method study based on moving average
Wang Shunli1,Shang Liping1,Li Zhanfeng2,Deng Hu1,Hu Xiaomin1
1.School of Information Engineering, Southwest University of Science and Technology, Mianyang 621010,China; 2.School of Manufacturing Science and Engineering, Southwest University of Science and Technology, Mianyang 621010,China
Abstract: A novel method is proposed based on moving average approach to detect the key process parameters of the airborne lithium batteries, aiming to solve its security application issues. The method is realized by constructing moving average model, which realizes its real-time security inspection. The experimental results show that this method can achieve 20 ms cycle real-time key parameter detection. The cell voltage detection accuracy is higher than 1‰FS. The total voltage detection accuracy is higher than 5‰FS. The heating and discharging current detection accuracy is 5‰FS and the real-time protecting execution time is 50 ms. This proposed key parameter real-time detection method has high stability advantages, which can effectively guarantee the application reliability for lithium battery packs. The proposition of this method can provide reliable application techniques and reference methods for lithium batteries.
Key words : lithium battery pack;security;key parameters;real-time detection;signal estimation

 

 0 引言

  航空領(lǐng)域受重量、體積限制,需要高能量密度和高功率密度蓄電池作為應(yīng)急供能和輔助動(dòng)力電源。鋰電池具有工作電壓高、容量大、自放電小、重量輕、體積小等其他蓄電池不具備的突出優(yōu)點(diǎn),成為該領(lǐng)域應(yīng)急供能和輔助動(dòng)力能源之首選。由于單體電壓和容量的限制,鋰電池需要串并聯(lián)成組使用,但是由于電池材料和生產(chǎn)工藝等原因,安全問題時(shí)有發(fā)生。如2011年杭州和上海電動(dòng)汽車鋰電池過熱導(dǎo)致自燃、2013年JA829J次航班波音787型客機(jī)中鋰電池組模塊冒煙起火[1]、特斯拉Model S 2013年10月至今發(fā)生鋰電池相關(guān)的5次起火等安全事故。鋰電池的安全隱患限制了其推廣應(yīng)用,因此鋰電池組的安全保障問題亟待解決。

  國(guó)內(nèi)相關(guān)單位(如北航、清華、中科大、中航鋰電、長(zhǎng)虹電源、德賽能源、天津力神、武漢力興、西科大等單位)[2-8]開展了相關(guān)研究工作,取得了一定成效,但仍缺乏可靠的解決辦法,鋰電池組的航空航天應(yīng)用仍存在安全隱患。國(guó)外從上世紀(jì)七十年代開始逐步使用鋰離子電池代替鎘鎳電池作為航空航天領(lǐng)域一級(jí)應(yīng)急供能和點(diǎn)火,如美國(guó)軍用A10、MQ-9、AH64等戰(zhàn)機(jī)和無人機(jī)已由使用Eagle-Picher公司的鎘鎳電池轉(zhuǎn)為鋰離子電池。美國(guó)NASA 和空軍已將鋰電池用于星際登陸器、星際徘徊者、星際軌道器、無人飛行器、軍用飛機(jī)和地球軌道飛行器等航空航天設(shè)備,且把使用鋰電池組作為空間工程的一個(gè)里程碑。限制鋰電池應(yīng)用的主要瓶頸是安全問題,已成為當(dāng)前世界的研究熱點(diǎn)。美國(guó)國(guó)家可再生能源室和萊登能源公司、英國(guó)利茲大學(xué)及日本Noboru Sato和東芝公司等單位都在投入大量精力研究其安全問題,在材料、工藝、添加劑、管理系統(tǒng)等方面進(jìn)行了系列研究[9-16]。部分研究成果應(yīng)用于生產(chǎn)實(shí)踐并取得了一定成效,但仍沒有安全保障的有效解決方案。鋰電池組起火、燃燒的隱患目前仍無法完全消除,其使用過程中的安全保障成為目前研究的焦點(diǎn)。

  本文針對(duì)機(jī)載鋰電池組的安全保障問題,從關(guān)鍵參量檢測(cè)角度出發(fā),基于滑動(dòng)平均思想進(jìn)行了關(guān)鍵參量實(shí)時(shí)檢測(cè)方法探索。實(shí)驗(yàn)驗(yàn)證結(jié)果表明,提出機(jī)載鋰電池關(guān)鍵參量檢測(cè)方法具有較高可靠性與實(shí)時(shí)性,基于該方法設(shè)計(jì)的機(jī)載鋰電池狀態(tài)檢測(cè)系統(tǒng)能夠有效保障其安全應(yīng)用。

1 理論分析

  1.1 滑動(dòng)平均方法

  針對(duì)采樣過程中的離散數(shù)據(jù)序列,計(jì)算序列的兩個(gè)或多個(gè)數(shù)據(jù)的滑動(dòng)平均,由此形成一個(gè)平均值的新序列。針對(duì)機(jī)載鋰電池組中單體電壓、組電壓、放電電流、加熱電流等關(guān)鍵參量的應(yīng)用特點(diǎn),基于滑動(dòng)平均思想實(shí)現(xiàn)該實(shí)時(shí)檢測(cè)過程。

  滑動(dòng)平均方法具體可描述為:假定一個(gè)可滑動(dòng)且長(zhǎng)度固定的窗口,這個(gè)窗口隨時(shí)間序列以隊(duì)列方式移動(dòng)。在移動(dòng)過程中,每移動(dòng)一個(gè)采樣間隔,窗口前面進(jìn)入一個(gè)新數(shù)據(jù),窗口后面刪除一個(gè)舊數(shù)據(jù)。這樣,在窗口中始終有固定數(shù)量的最新數(shù)據(jù),經(jīng)過算數(shù)平均后即可得到一組經(jīng)過滑動(dòng)平均的新序列,計(jì)算過程:

  1.png

  式中,VI為電壓或電流采樣數(shù)據(jù)序列(其中,VInew為滑動(dòng)平均處理后新采用序列,VIold為上一個(gè)采樣間隔之前的舊數(shù)據(jù)序列);n為要處理的數(shù)據(jù)時(shí)刻;N為窗口寬度,也即為有效數(shù)據(jù)序列的總長(zhǎng)度。

  滑動(dòng)平均過程示意圖如圖1所示。

001.jpg

  該滑動(dòng)平均模型的頻率響應(yīng)式:

  2.png

  其中,針對(duì)該頻率響應(yīng)的振幅函數(shù)的頻率響應(yīng):

  3.png

  由式(3)可知,滑動(dòng)平均處理是一個(gè)低通濾波器,衰減了高頻信號(hào)的影響,對(duì)數(shù)據(jù)起到平滑作用。由頻譜分析可知,窗口越寬則通帶越窄,而單個(gè)矩形脈沖頻譜與滑動(dòng)平均處理后的頻譜具有一致性?;谶@個(gè)特點(diǎn),通過選擇合理的窗口寬度,可以在有效地抑制噪聲的同時(shí)保持有用信號(hào),起到提高信噪比的作用。

  同時(shí),在滑動(dòng)平均過程中,噪聲信號(hào)是隨機(jī)的,且經(jīng)過平均處理后得到抑制,而有用信號(hào)得到有效積累,從而使得有用信號(hào)得到有效保持和加強(qiáng)。

  滑動(dòng)平均處理是相關(guān)檢測(cè)中的一個(gè)特例,應(yīng)用機(jī)理在于利用有用信號(hào)的良好相關(guān)性和噪聲的不相關(guān)性,形成的有用信號(hào)積累而噪聲不積累的原理,從而把噪聲從有用信號(hào)中隔離出去。在相關(guān)檢測(cè)中的自相關(guān)和互相關(guān)這兩種方式中,自相關(guān)適用于周期信號(hào),而互相關(guān)適用于非周期脈沖信號(hào)。

  信號(hào)采樣過程中的原始時(shí)間信號(hào)由有用信號(hào)和噪聲信號(hào)兩部分構(gòu)成,即:

  x(t)=s(t)+n(t)(4)

  式中,s(t)為有用信號(hào),n(t)為噪聲信號(hào),x(t)為實(shí)際采樣過程中的隨機(jī)信號(hào)。在實(shí)際檢測(cè)過程中,基于采樣定理,經(jīng)過A/D采樣后,信號(hào)轉(zhuǎn)換為基于采樣周期τ的離散數(shù)字信號(hào),即:

  5.png

  式中,s[n]為有用時(shí)間離散信號(hào),?啄[n]為噪聲時(shí)間離散信號(hào),x[n]為實(shí)際采樣過程中的隨機(jī)時(shí)間離散信號(hào)。

  針對(duì)同類型采樣過程,信號(hào)x[n]和信號(hào)y[n]的互相關(guān)函數(shù)為:

  6.png

  式中,N表示數(shù)字信號(hào)序列長(zhǎng)度,k為延時(shí)時(shí)刻。由于噪聲與信號(hào)不相關(guān),二者互相關(guān)值為0,則可以通過這種互相關(guān)處理減少噪聲對(duì)信號(hào)的影響。

  對(duì)于所用寬度為N的理想矩形脈沖信號(hào),可表示為:

  7.png

  如果其反射并疊加噪聲后的信號(hào)為x[n],則互相關(guān)函數(shù)如式(6)所示,把式(7)代入式(6),可得到二者的互相關(guān)函數(shù):

  8.png

  可以看到,式(8)和式(1)是一致的,從其計(jì)算過程可知,滑動(dòng)平均計(jì)算是互相關(guān)計(jì)算中的一種特殊情況。因此,在信號(hào)檢測(cè)時(shí),就可以把單脈沖檢測(cè)轉(zhuǎn)化為滑動(dòng)平均處理。

  1.2 關(guān)鍵參量采樣機(jī)理

002.jpg

  機(jī)載鋰電池組關(guān)鍵參量采樣結(jié)構(gòu)如圖2所示,在采樣過程中,通過四線制連線方式將動(dòng)力線和信號(hào)采樣線分開,以降低線壓降。通過實(shí)時(shí)采集各單體電壓、總電壓、總電流、加熱電流、各單體溫度等關(guān)鍵參量,監(jiān)測(cè)蓄電池組工作狀態(tài),并進(jìn)行實(shí)時(shí)決策調(diào)整。

2 實(shí)驗(yàn)與分析

  2.1 采樣與濾波處理實(shí)驗(yàn)

  機(jī)載鋰離子蓄電池采用8芯單體串聯(lián)工作,實(shí)時(shí)采樣線與均衡調(diào)節(jié)動(dòng)力線分開,四線制模式進(jìn)行數(shù)據(jù)采樣。針對(duì)該鋰電池組進(jìn)行實(shí)時(shí)單體電壓采樣,單體電壓采樣原始數(shù)據(jù)和滑動(dòng)平均處理后數(shù)據(jù)如圖3所示。

003.jpg

  針對(duì)所有單體的電壓實(shí)時(shí)采樣與保護(hù),使用隊(duì)列方式對(duì)各單體信號(hào)進(jìn)行實(shí)時(shí)滑動(dòng)平均信號(hào)檢測(cè)與濾波處理,所有單體采樣電壓滑動(dòng)平均處理后的實(shí)時(shí)檢測(cè)數(shù)據(jù)如圖4所示。

004.jpg

  應(yīng)用該方法于加熱電流、放電電流和組電壓的實(shí)時(shí)檢測(cè)與保護(hù)處理,取得同樣的處理效果。

  針對(duì)鋰離子蓄電池組全電壓檢測(cè),綜合對(duì)比各種采樣方法效果,最終使用INA117低功耗零漂移儀表放大器,結(jié)合OPA27比例縮放,實(shí)現(xiàn)全電壓檢測(cè),最后經(jīng)過滑動(dòng)平均方法進(jìn)行有效低通濾波處理,實(shí)現(xiàn)全電壓信號(hào)實(shí)時(shí)檢測(cè)。檢測(cè)結(jié)果如圖5所示。

005.jpg

  全電壓檢測(cè)過程中,由于受到充放電過程影響較大,直接采樣具有0.4 V的隨機(jī)誤差,因此,信號(hào)采樣后的濾波更是尤為必要,經(jīng)過滑動(dòng)平均處理后的隨機(jī)誤差降為0.03 V,具有明顯的濾波處理效果。

  2.2 結(jié)果分析

  由圖3可知,單體電壓采樣平滑處理前后數(shù)據(jù)優(yōu)化效果明顯,該處理過程能夠起到較好的濾波效果。在原始數(shù)據(jù)中,由于外部高頻噪聲影響,單體電壓采樣存在較大噪聲,最高有12 mV的隨機(jī)誤差影響。經(jīng)過滑動(dòng)平均處理后,最高有2 mV的隨機(jī)誤差。該鋰離子蓄電池工作過程中最高電壓為4.2 V,則經(jīng)過該滑動(dòng)平均處理前后的相對(duì)隨機(jī)誤差為:

  9.png

  由圖4可知,在8單體同步采樣過程中,該滑動(dòng)平均方法能夠?qū)Ω魍ǖ绬误w電壓采樣起到同樣的平滑處理效果,證明該方法對(duì)該類型信號(hào)采樣處理具有普遍適應(yīng)性。

  由圖5 可知,全電壓檢測(cè)過程中,滑動(dòng)平均前后隨機(jī)誤差計(jì)算過程如下:

  10.png

  實(shí)驗(yàn)結(jié)果表明,該方法能夠?qū)崿F(xiàn)對(duì)機(jī)載鋰離子電池組關(guān)鍵參量的實(shí)時(shí)有效處理。該方法與直接采樣數(shù)據(jù)對(duì)比,在不降低采樣時(shí)間的基礎(chǔ)上提高了采樣精度。同時(shí),與傳統(tǒng)多次采樣取平均方法相比,很大程度上縮短了采樣處理時(shí)間,對(duì)實(shí)時(shí)檢測(cè)保護(hù)具有重要意義。

3 結(jié)語

  本文提出了一種基于滑動(dòng)平均的鋰電池組單體電壓、組電壓、加熱電流和放電電流等關(guān)鍵參量的實(shí)時(shí)檢測(cè)方法。該方法基于滑動(dòng)平均思想濾除高頻噪聲影響,通過噪聲信號(hào)抑制和有用信號(hào)累積,對(duì)關(guān)鍵參量采樣起到較好濾波平滑效果。該方法已應(yīng)用于機(jī)載鋰電池組實(shí)時(shí)檢測(cè)保護(hù)單元,并取得了良好的工程應(yīng)用效果。該方法提出對(duì)鋰電池組的安全應(yīng)用提供保障,有效保證其應(yīng)用中的可靠性,對(duì)鋰電池安全保障標(biāo)準(zhǔn)化和應(yīng)用推廣起到有益的推動(dòng)作用。

  參考文獻(xiàn)

  [1] 方謀,趙驍,陳敬波.從波音787電池事故分析大型動(dòng)力電池組的安全性[J].儲(chǔ)能科學(xué)與技術(shù),2014,3(1):42-46.

  [2] 魏克新,陳峭巖.基于自適應(yīng)無跡卡爾曼濾波算法的鋰離子動(dòng)力電池狀態(tài)估計(jì)[J].中國(guó)電機(jī)工程學(xué)報(bào),2014,3(3):445-452.

  [3] 陳雄姿,于勁松,唐荻音.基于貝葉斯LS-SVR的鋰電池剩余壽命概率性預(yù)測(cè)[J].航空學(xué)報(bào),2013,34(9):2219-2229.

  [4] 張千玉,姜冬冬,李溪.一種新型鋰電池雙功能電解液添加劑的研究[J].電源技術(shù),2014,38(8):1424-1426.

  [5] 于仲安,簡(jiǎn)俊鵬,何方.純電動(dòng)汽車鋰電池組均衡系統(tǒng)研究與設(shè)計(jì)[J].電力電子技術(shù),2014,48(3):64-67.

  [6] 邱斌斌,劉和平,楊金林.一種磷酸鐵鋰動(dòng)力電池組主動(dòng)均衡充電系統(tǒng)[J].電工電能新技術(shù),2014,33(1):71-75.

  [7] 姬芬竹,劉麗君,楊世春.電動(dòng)汽車動(dòng)力電池生熱模型和散熱特性[J].北京航空航天大學(xué)學(xué)報(bào),2014,40(1):18-24.

  [8] 尚麗平,王順利,李占鋒.基于SOC的AGV車載蓄電池組主動(dòng)均衡方法研究[J].電子技術(shù)應(yīng)用,2014,40(6):67-69,73.

  [9] Jung Seunghun,Kang Dalmo.Multi-dimensional modeling oflarge-scale lithium-ion batteries[J].Journal of Power Sources,2014,1(248):498-509.

  [10] JONGHOON K,SEONGJUN L,CHO B H.Complementary cooperation algorithm based on DEKF combined with pattern recognition for SOC/capacity estimation and SOH prediction[J].IEEE Transactions on Power Electronics,2012,27(1):436-451.

  [11] DAVE A,CHRISTIAN A,THOMAS S G.Advanced math-ematical methods of SOC and SOH estimation for lithium-

  ion batteries[J].Journal of Power Sources,2013,1(224):20-27.

  [12] Ng Selina S.Y.,Xing Yinjiao,Tsui Kwok L.A naive bayes model for robust remaining useful life prediction of lithium-ion battery[J].Applied Energy,2014,1(118):114-123.

  [13] ADNAN N,TARIK T,THOMAS S G.Health diagnosis andremaining useful life prognostics of lithium-ion batteries using data-driven methods[J].Journal of Power Sources,2013,1(239):680-688.

  [14] ANDRE D,NUHIC A,SOCZKA-GUTH T.Comparative study of a structured neural network and an extended Kalman filter for state of health determination of lithium-ion batteries in hybrid electricvehicles[J].Engineering Applications of Artificial Intelligence,2013,26(3):951-961.

  [15] CHRISTIAN F,WLADISLAW W,ZIOU B.Adaptive on-line state-of-available-power prediction of lithium-ion batteries[J].Journal of Power Electronics,2013,13(4):516-527.

  [16] Lin Ho-Ta,Liang Tsorng-Juu,Chen Shih-Ming.Esti-mation of battery state of health using probabilistic neural network[J].IEEE Transactions on Industrial Informatics,2013,9(2):679-685.


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。