在多通道接收機接收的過程中,噪聲的加入限制了信號的信噪比和靈敏度,由于射頻接收機所接收到的信號較為微弱,其噪聲特性顯得尤為重要。另一方面在多通道成像的過程中,不同通道的接收路徑有可能不同,即使接收路徑一樣,各通道的噪聲特性也不可能完全一樣。故接收機每個通道各級的噪聲系數(shù)的精確測量非常重要。傳統(tǒng)的噪聲系數(shù)測量方法不能滿足測量大噪聲系數(shù)的要求。且在實際的多通道測量中,需要使得被測通道處在接收狀態(tài),其他通道不工作以減少通道間的噪聲干擾來保證測量的準(zhǔn)確性??紤]到接收到射頻信號的微弱,射頻接收機的前端通常有一個用低噪聲
1優(yōu)化測量噪聲系數(shù)的原理
射頻接收機的噪聲主要包括電阻的熱噪聲和PN結(jié)的散彈噪聲,均屬于白噪聲的范疇。白噪聲不包括任何離散成分,其電平符合高斯分布。功率譜在一定的頻率范圍為均勻分布。噪聲系數(shù)是表征線性二端口網(wǎng)絡(luò)或二端口變換器系統(tǒng)噪聲特性的一個重要參數(shù)。它的標(biāo)準(zhǔn)定義為:接收機輸入端信噪功率比與輸出端信噪功率比的比值。根據(jù)尼奎斯特定理,處于標(biāo)準(zhǔn)噪聲溫度T0(290 K)的輸入端產(chǎn)生的資用噪聲為功率為kT0 B;k為玻爾茲曼常數(shù)(1.38×10-23J/K);B為等效帶寬。設(shè)網(wǎng)絡(luò)的資用噪聲增益為G,對于線性網(wǎng)絡(luò)來說資用噪聲增益等于資用信號功率增益,則僅由輸入端所產(chǎn)生的輸出資用噪聲功率為GkT0B,設(shè)端口輸入輸出的信號及噪聲功率分別為Psi,Pni,Pso,Pno,由此即可得到噪聲系數(shù)(F)2 種互相等效的定義:
由于被測的接收機不是工作在線性區(qū)域,而信號源法需要知道被測網(wǎng)絡(luò)的等效噪聲帶寬,要準(zhǔn)確測定等效噪聲帶寬是很困難的,因此信號源法測試誤差較大,實際測試中需采用噪聲源法。常用的采用噪聲源法的測量噪聲系數(shù)方法包括:增益法,Y系數(shù)法和噪聲系數(shù)儀法。使用噪聲系數(shù)測試儀是測量噪聲系數(shù)的最直接方法。在大多數(shù)情況下也是最準(zhǔn)確的。且可在特定的頻率范圍內(nèi)測量噪聲系數(shù),分析儀能夠同時顯示增益和噪聲系數(shù)幫助測量。但當(dāng)噪聲系數(shù)超過10 dB,測量結(jié)果非常不準(zhǔn)確。對于MRI的射頻接收機來說,這種方法所能測量的噪聲系數(shù)的范圍太小,顯然不適用。而增益法和Y系數(shù)法都是利用頻譜儀來測量,所不同的是增益法需要事先知道被測元器件的資用增益,而且受到頻譜儀噪聲基底的限制。Y系數(shù)法是測量噪聲系數(shù)的一種典型方法。在測量中,當(dāng)被測網(wǎng)絡(luò)的輸入端處于2個不同的資用功率時(例如:噪聲發(fā)生器的熱態(tài)T和冷態(tài)T),輸出端可以得到2個相應(yīng)的資用功率PNO,PNO,通常把這兩個功率之比記作Y,設(shè)這一個二端口的網(wǎng)絡(luò)(或是二端口的元器件)等效噪聲溫度為Te,增益為G,被測網(wǎng)絡(luò)的噪聲系數(shù)為F,可得:
利用Y因子測量噪聲系數(shù)需要冷噪聲源和熱噪聲源以便在輸入端實現(xiàn)不同的噪聲功率輸入,通常是通過對固態(tài)噪聲源加電壓和不加電壓實現(xiàn),即當(dāng)噪聲發(fā)生器被施加直流電壓時,噪聲發(fā)生器產(chǎn)生噪聲輸出形成熱噪聲源,當(dāng)未施加電壓時,存在于噪聲發(fā)生器內(nèi)部熱擾動產(chǎn)生的剩余噪聲形成冷噪聲源。加電壓的方法只適合測量較小的噪聲系數(shù),當(dāng)被測網(wǎng)絡(luò)的噪聲系數(shù)較大時,需要獲得較高的Y因子來減小測量誤差,因此需要較高的直流電源來獲得熱噪聲源,這在實際中是難以實現(xiàn)的,即傳統(tǒng)的Y因子測量方法誤差較大,所以需要對噪聲源進行優(yōu)化。由于接收機的第二級為前置低噪聲放大器,它的噪聲系數(shù)相對于接收機的其他級很小,可以直接用噪聲系數(shù)儀測量。在接收機中所使用的低噪聲放大器的增益為30 dB,故可以控制放大器使得它在工作即放大條件為下一級提供熱噪聲源,在不放大條件下提供冷噪聲源,這樣就可以得到較大的Y因子,減小測量大噪聲系數(shù)時的誤差。而且不需要額外的噪聲源和直流電源,簡化了設(shè)計。
2多路信道切換(
實驗所用到的接收機有8個通道,實際測量噪聲系數(shù)需要對每個通道單獨用頻譜儀進行測量,即八個通道只有一個通道工作,另外7個通道處于斷路狀態(tài),而在射頻接收機中,沒有接收信號的通道輸入需要用50 Ω的電阻蓋住。根據(jù)以上分析需要設(shè)計一個8通道選任一通道的射頻開關(guān),且不工作的其他通道輸出端呈50 Ω阻抗。
這種特性可利用PIN開關(guān)設(shè)計。PIN開關(guān)是利用PIN二極管不同偏置下電特性制成的射頻半導(dǎo)體控器件。它具有優(yōu)良的開關(guān)特性:當(dāng)PIN二極管正向直流偏置時對射頻信號呈近似短路狀態(tài);當(dāng)PIN二極管反向偏置時對射頻信號呈近似開路狀態(tài)。PIN二極管開關(guān)具有控制速度快、損耗小、功率容量大的特點。
如圖1所示,在每一路通道放置一個單刀單擲射頻開關(guān),每個開關(guān)均有一根控制線控制其通斷。通過對8路控制線設(shè)置選擇惟一的1路導(dǎo)通即可實現(xiàn)八選任一路的切換。
用矢量網(wǎng)絡(luò)儀R&S ZVB4測量該射頻開關(guān)的頻率范圍、插入損耗及隔離度,結(jié)果如圖2所示:
圖2為本文所設(shè)計的射頻開關(guān)在中心頻率為63.6 MHz,帶寬為120 MHz下的特性,圖2為開關(guān)導(dǎo)通時的S21曲線。圖2的上方曲線為開關(guān)截止時的S21,下方曲線為截止時的S22(反映輸出端的反射特性)。由圖知該開關(guān)在導(dǎo)通狀態(tài)下的插入損耗僅為-0.259 dB;而在隔離狀態(tài)下中心頻率附近的傳輸損耗為-32.205 dB,且輸出端的反射系數(shù)為-34.568 dB。說明該開關(guān)在以接收機的工作頻率為中心頻率的寬帶范圍內(nèi)具有良好的導(dǎo)通和截止特性,且在截止?fàn)顟B(tài)下輸出端匹配良好。因為接收機只工作在中心頻率附近的窄帶范圍,故此開關(guān)設(shè)計指標(biāo)符合要求,且性能比設(shè)計指標(biāo)更為優(yōu)越。
3接收機噪聲測試結(jié)構(gòu)及具體方法
接收機所接收到的信號的載波頻率為63.6 MHz的窄帶信號,故只需測量中心頻率63.6 MHz,帶寬范圍較小的噪聲特性。噪聲測試需要測量出每一級的噪聲系數(shù),而接收機的每一級的噪聲系數(shù)及增益各有不同,為了測量的準(zhǔn)確性,必須用使用不同的測量方法。
由于低噪放的噪聲系數(shù)較小,可以直接用噪聲系數(shù)儀測量。實驗中用Agilent公司生產(chǎn)的N8973A噪聲儀進行測量,由于接收機所使用的低噪放直流供電在輸出端,而噪聲系數(shù)儀的輸入端不能直接接直流電,故測量時要在
對于接收機中噪聲系數(shù)較大的網(wǎng)絡(luò),需要用上文提到的優(yōu)化Y因子的測量方法,由于接收機本身的構(gòu)造以及此種方法中需要放大器工作在放大/不放大2 種狀態(tài),測量中需要設(shè)計控制電路來達到測量要求。如圖3,虛線方框內(nèi)為實驗設(shè)計的通道切換和前置放大器控制電路、方框外為接收機模型、放大器輸入端用50 Ω替代接收線圈提供噪聲輸入,同時為了簡化框圖,只畫出接收機的放大器后2級。在MRI射頻接收機中,為低噪聲放大器供電的電壓(DC+10 V,如圖3所示)是從系統(tǒng)的
測試中,設(shè)置各路開關(guān)的控制線,使要測的那路導(dǎo)通,其余路斷開,閉合該通道的直流開關(guān),然后用頻譜儀測量輸出的噪聲譜密度PNO_n,而后斷開該路的直流開關(guān),再用頻譜儀測量輸出的噪聲譜密度PNO_n,由于室溫T0(290 K)的噪聲譜密度P。約為-174 dBm,設(shè)噪聲源的等效溫度為Tn,Tn,可得:
實驗用的頻譜儀為Agilent公司的F4411B,測試的中心頻率為63.6 MHz,SPAN取20 MHz。選取“Function”中的“Noise",設(shè)定合適的VBW/RBW,調(diào)節(jié)RefLevel使頻譜儀位于噪聲基底,當(dāng)Ref Level取-63 dBm時達到噪聲基底,經(jīng)“Average”后顯示為-153.1 dBm??刂泼柯稢ON線,使得通路再8個信道轉(zhuǎn)換,重復(fù)以上的測量步驟,便可得到每一路的噪聲系數(shù)。
4結(jié) 語
利用此種方法對MRI射頻接收機各個通道切換下的各級進行了噪聲系數(shù)測試,實測的各個通道與設(shè)計中定義的指標(biāo)值相差0.2 dB范圍內(nèi),且由于高頻通信系統(tǒng)的接收部分具有一定的共性,即通常下考慮整個接收機的噪聲系數(shù)特性,接收機的第一級都要接前置低噪聲放大器。故此類方法可以推廣到其他的射頻接收機當(dāng)中。
本文解決了射頻接收機多路信道噪聲系數(shù)比較以及接收機不同模塊的噪聲系數(shù)測量。獨創(chuàng)性地利用接收機前端的低噪聲放大器提供冷熱噪聲源優(yōu)化Y因子測量方法,并以MRI射頻接收機為例設(shè)計出性能優(yōu)越的多路射頻開關(guān)實現(xiàn)信道切換,實踐證明該方法是適用而有效的。