Author(s):
Cheah Peng Huat - Nanyang Technological University
Siow Lip Kian - Nanyang Technological University
Liang Hong Zhu - Nanyang Technological University
Vo Quoc Nguyen - Nanyang Technological University
Nguyen Dinh Duc - Nanyang Technological University
Gooi Hoay Beng - Nanyang Technological University
新加坡南洋理工大學(NTU)電子工程學院(EEE)的清潔能源研究實驗室的學生(LaCER)開發(fā)出了一套微網(wǎng)系統(tǒng)原型。它包含例如太陽能PV、風力渦輪、燃料電池和電池庫等能源。整個微網(wǎng)用基于網(wǎng)頁的MEMS服務器系統(tǒng)控制。MEMS負責控制并監(jiān)視能源管理的不同方面。
我們開發(fā)了軟件程序管理采集到的傳感信息,完成負載控制器和發(fā)電分配。圖1顯示了數(shù)據(jù)庫和不同軟件模塊之間的界面示意圖。例如高級傳感和通信系統(tǒng)、負載預測(LF)、機組組合(UC)、狀態(tài)估計(SE)和最優(yōu)功率流(OPF)等模塊都是使用LabVIEW開發(fā)的。
高級傳感和通信系統(tǒng)
在微網(wǎng)中,傳感和控制設(shè)備的集成和交互是一個挑戰(zhàn),因為它涉及不同通信協(xié)議,例如RS-232串行通信、RS422-/485 modbus通信等。為了解決這個問題,我們建議將所有信息轉(zhuǎn)換為一個標準協(xié)議,即以太網(wǎng)通信協(xié)議或通常稱為TCP/IP協(xié)議。這個轉(zhuǎn)換可以通過使用通信協(xié)議轉(zhuǎn)換器方便而經(jīng)濟地完成。
在MEMS服務器和功率傳感器以及其他例如斷路器、可編程交流電源和PLC等其他控制設(shè)備之間傳感和通信是我們的主要設(shè)計任務。在整個微網(wǎng)網(wǎng)絡中安裝了32個支持Modbus協(xié)議的功率傳感器單元,用于例如電壓、電流、有功功率、無功功率和斷路器狀態(tài)的能量監(jiān)視測量。為了在MEMS服務器和所有功率傳感器之間部署經(jīng)濟的的解決方案,這些傳感器被分成四組,每組包含八個傳感器單元。每組最終連接到RS-485到TCP/IP轉(zhuǎn)換器,將Modbus協(xié)議轉(zhuǎn)換為運行在以太網(wǎng)LAN網(wǎng)絡商的Modbus TCP協(xié)議。為每個傳感器配置一個唯一的IP地址,每組功率傳感器都配置一個相應的ID。
通過輸入功率傳感器的IP地址、傳感器ID和寄存器地址,我們使用LabVIEW DSC模塊提取功率測量值。用戶無需定義確切的modbus消息提取信息,因此為用戶節(jié)省了寶貴的時間。所有功率測量值都被發(fā)送到LabVIEW的全局變量中,如圖2在主要圖形界面中顯示,用于監(jiān)視。除此以外,還可以通過全局變量在其他應用程序中使用。相同的方法還用于PLC控制微網(wǎng)中的斷路器。
使用可編程交流源主要用于測試獨立微網(wǎng)。為了與功率源通信,我們使用LabVIEW中的TCP協(xié)議函數(shù)模塊。用戶只需要輸入功率源的IP地址,無需任何繁瑣的程序代碼就可以對功率源進行監(jiān)視和控制。
負載預測
負載預測的目標是提前15分鐘預測總用戶負載。它對于有效的市場運作以及微網(wǎng)的控制和計劃有重要的影響。精確的預測數(shù)值能夠節(jié)省能源并且提高系統(tǒng)運作的安全性。
預測方法是基于人工神經(jīng)網(wǎng)絡(ANN)的。LabVIEW用于開發(fā)如圖3所示的神經(jīng)網(wǎng)絡。為了提高LF算法性能,增加了特殊解決方案:
數(shù)據(jù)采集——用于檢測錯誤和異常數(shù)據(jù),在用于訓練之前刪除或調(diào)整。
早期停止——加速收斂并防止訓練數(shù)據(jù)過度擬合。
異常日期規(guī)劃——檢測負載規(guī)劃異常的日期,并將它們從訓練中去除,從而不會破壞負載模型。用戶能夠從GUI中更新異常日期。
相關(guān)性和線性回歸分析——通過使用直線找出輸入和目標數(shù)據(jù)的線性關(guān)系。
歷史負載數(shù)據(jù)是從NTU的Wee Kim Wee通信與信息大樓使用NI數(shù)據(jù)采集設(shè)備 NI USB-6215 采集的。這些數(shù)據(jù)使用LabVIEW處理并存儲在數(shù)據(jù)庫中。為了采集這些每日負載數(shù)據(jù)(即分布式網(wǎng)格的負載電壓和電流),我們將數(shù)據(jù)采集設(shè)備的模擬輸入通過降電壓變壓器連接到大樓的分布式網(wǎng)格中,以及電流電壓變換器分別獲取電壓和電流數(shù)據(jù)。
LF算法已經(jīng)成功整合到MEMS的UC中。實現(xiàn)的預測系統(tǒng)能夠以令人滿意的精度可靠地進行預測。
機組組合
機組組合(UC)軟件模塊是MEMS的主要組成之一。這個軟件模塊基于預測需求,能夠協(xié)助微網(wǎng)找到最優(yōu)功率生成計劃,在微網(wǎng)獨立的情況下,將總操作成本降至最小,或是在微網(wǎng)連接到主電網(wǎng)時,將總受益最大化。在優(yōu)化過程完成后,包含開關(guān)狀態(tài)的結(jié)果和發(fā)電源的分配kW數(shù)將會送到MEMS的最優(yōu)功率流(OPF)模塊進行處理。UC是功率系統(tǒng)管理中最為復雜的優(yōu)化問題。通過使用LabVIEW的MATLAB腳本函數(shù),軟件能夠在幾秒內(nèi)確定包含多個約束和數(shù)百個變量的優(yōu)化解決方案。UC的主要用戶界面如圖5所示。
軟件模塊包含以下特性:
通過使用LabVIEW的MATLAB腳本函數(shù),可以在幾秒內(nèi)解決復雜的UC問題。
使用LabVIEW建立的圖形界面,用戶能夠方便地點擊鼠標用默認設(shè)置或定制設(shè)置運行UC優(yōu)化。
通過運行LabVIEW的實時抓取函數(shù),軟件可以在用戶定制的自動開始時間自動執(zhí)行。
在優(yōu)化完成后,結(jié)果將自動保存到服務器系統(tǒng)中用戶指定的路徑,并且同時發(fā)送到MEMS的OPF中。
狀態(tài)估計
狀態(tài)估計是MEMS實時函數(shù),它使用SCADA采集的測量、斷路器狀態(tài)和電壓調(diào)節(jié)器位置驗證并估計功率系統(tǒng)的總線電壓。估計的總線電壓幅值和電壓相位角被認為是系統(tǒng)的可靠狀態(tài),作為OPF的一個輸入,其處理后的總線負載數(shù)值作為負載預測的輸入。
狀態(tài)估計器包含三個子函數(shù),它們是用Matlab編程語言在LabVIEW平臺上編寫的。.
拓撲處理器:通過將節(jié)點網(wǎng)絡轉(zhuǎn)換為總線網(wǎng)絡確定網(wǎng)絡配置。
狀態(tài)估計:計算總線電壓幅值和相位
錯誤數(shù)據(jù)檢測與判斷:在狀態(tài)估計器使用原始測量值前,檢驗其是否良好
在編寫狀態(tài)估計器時,確保它能夠運行在任何功率網(wǎng)絡是一個挑戰(zhàn)。因此使用腳本模塊是描述復雜算法時提高靈活性的一個方法。每個子函數(shù)都使用LabVIEW中的腳本模塊實現(xiàn)。輸入和輸出(一維和二維)創(chuàng)建用于將數(shù)據(jù)從腳本模塊傳送到其他或前面板用于顯示結(jié)果。還使用反饋節(jié)點作為錯誤數(shù)據(jù)檢測與判斷的過濾器。
處理是基于矩陣計算的,LabVIEW提供了編程工具更方便地編寫功率系統(tǒng)應用程序,因此它能夠為程序員節(jié)省時間。
狀態(tài)估計函數(shù),與其它MEMS函數(shù)一起,已在NTU清潔能源研究實驗室的微型網(wǎng)格硬件裝置上做了成功演示。狀態(tài)估計器的主要用戶圖形界面如圖6所示。
最優(yōu)功率流
最優(yōu)功率流(OPF)是MEMS的在線函數(shù)之一。OPF的目標是找出給定功率系統(tǒng)網(wǎng)絡的最優(yōu)設(shè)置,將例如總發(fā)電成本或系統(tǒng)損失等系統(tǒng)目標函數(shù)進行優(yōu)化,同時滿足其功率流方程和例如總線電壓約束、分支流限制和發(fā)電源容量限制等設(shè)備操作限制。OPF的輸入包含SE定義的網(wǎng)絡配置和負載信息,作為輸出結(jié)果,OPF將給出以下推薦數(shù)值
源有功/無功功率輸出
負載下的調(diào)壓變壓器比例
這些參數(shù)將送到CB控制器、逆變控制器、發(fā)電控制器和負載調(diào)壓控制器,從而確保系統(tǒng)運行在更為經(jīng)濟有效的模式。
二次編程用于解決OPF問題。這個算法在MATLAB中編寫,然后通過MATLAB腳本函數(shù)集成到LabVIEW中?;贚abVIEW平臺,OPF連接到SE和SCADA控制某個微網(wǎng)組件。通過使用LabVIEW工具箱,LaCER微網(wǎng)的主要OPF圖形界面如圖7所示。LabVIEW工具箱,LaCER微網(wǎng)的主要OPF圖形界面如圖7所示。