過(guò)去,RF研發(fā)人員在高性能接收器設(shè)計(jì)中使用無(wú)源下變頻混頻器取得了較好的整體線(xiàn)性指標(biāo)和雜散指標(biāo)。但在這些設(shè)計(jì)中使用分立的無(wú)源混頻器也存在一些缺點(diǎn)。
為了達(dá)到接收器整體噪聲系數(shù)的指標(biāo)要求,需要在射頻(RF)增益級(jí)或中頻(IF)增益級(jí)補(bǔ)償無(wú)源混頻器的插入損耗。與集成混頻器相比,使用無(wú)源混頻器時(shí),用戶(hù)不僅要考慮其輸入三階截點(diǎn)(IIP3),還要考慮輸出三階截點(diǎn)(OIP3)。無(wú)源混頻器的二階線(xiàn)性指標(biāo)一般都比集成平衡混頻器的差,而該指標(biāo)在考慮接收器的半中頻雜散性能時(shí)非常重要。由于混頻器的線(xiàn)性度與本振驅(qū)動(dòng)電平直接相關(guān),所以必須產(chǎn)生相當(dāng)大的本振注入,然后通過(guò)PCB布線(xiàn)饋入無(wú)源混頻器的本振端口。此外,還需要外部RF放大級(jí)對(duì)這些信號(hào)進(jìn)行放大,使整個(gè)設(shè)計(jì)對(duì)本振輻射和干擾非常敏感。由于無(wú)源混頻器是一個(gè)全分立方案,成本更高、PCB尺寸更大,由于分立元件之間的偏差也會(huì)導(dǎo)致性能上的差異。
集成(或有源)混頻器設(shè)計(jì)可以獲得與無(wú)源混頻器相媲美的性能,因而備受歡迎。集成混頻器包含一個(gè)真正的平衡混頻器(Gilbert單元)或帶有中頻放大的無(wú)源混頻器,借助增益補(bǔ)償了損耗。由于集成混頻器具有增益級(jí),不再像無(wú)源混頻器那樣需要外部中頻放大器補(bǔ)償損耗。對(duì)于噪聲系數(shù)指標(biāo)非常好的集成混頻器,如Maxim的MAX9993、MAX9981和MAX9982,在混頻電路前端需要較小的RF增益,從而改善了接收器的整體線(xiàn)性指標(biāo)。值得強(qiáng)調(diào)的是,如果通過(guò)在混頻器前端提高增益來(lái)改善串聯(lián)噪聲系數(shù),也必須提高混頻器的線(xiàn)性度,以保持接收器的整體線(xiàn)性指標(biāo)。Maxim的MAX9993、MAX9981和MAX9982混頻器還包括有本振(LO)驅(qū)動(dòng)電路。
Maxim的MAX9993高線(xiàn)性度下變頻混頻器具有圖1所示功能:
圖1. MAX9993等效電路
MAX9993在PCS和UMTS頻帶的指標(biāo)如下:
變頻增益 = 8.5dB
噪聲系數(shù) = 9.5dB
三階輸入截點(diǎn)(IIP3) = +23.5dBm
三階輸出截點(diǎn)(OIP3) = +32dBm
二階輸入截點(diǎn)(IIP2) = +60dBm
二階輸出截點(diǎn)(OIP2) = +68.5dBm
低本振驅(qū)動(dòng)電平:0到+6dBm
兩路開(kāi)關(guān)(SPDT)為GSM應(yīng)用選擇LO輸入(本振開(kāi)關(guān)在無(wú)切換應(yīng)用重,如cdma2000?,選擇固定本振信號(hào))
圖2所示是一個(gè)無(wú)源混頻器、中頻放大器和LO放大器組成的分立方案。圖中使用了單端元件,其二階線(xiàn)性度與Maxim的集成混頻器相比較差。從集成RF混頻器的數(shù)據(jù)資料看,為了與Maxim的集成混頻器進(jìn)行比較,RF電路設(shè)計(jì)人員必須在無(wú)源設(shè)計(jì)中考慮各個(gè)分立元件的等效串聯(lián)特性。例如,設(shè)計(jì)人員不僅要注意無(wú)源混頻器的三階輸入截點(diǎn),而且要考慮它的三階輸出截點(diǎn)和包括中頻放大級(jí)在內(nèi)的整體系統(tǒng)響應(yīng)。此外,設(shè)計(jì)者還必須計(jì)算無(wú)源混頻器方案的等效增益和噪聲系數(shù),并將結(jié)果與集成混頻器參數(shù)進(jìn)行比較。
圖2. 分立混頻器/中頻放大器
對(duì)每級(jí)電路都使用了以下符號(hào):
G = 變頻功率增益
NF = 噪聲系數(shù)
IIP3 = 輸入三階截點(diǎn)
OIP3 = 輸出三階截點(diǎn)
實(shí)例
參照?qǐng)D2,計(jì)算中頻放大器參數(shù),得到與MAX9993增益、噪聲系數(shù)和三階截點(diǎn)性能相當(dāng)?shù)恼w串聯(lián)響應(yīng)。假定Mini-Circuits? HJK-19MH無(wú)源混頻器用于PCS和UMTS頻帶,給定參數(shù)為:
G1 = -7.5dB
NF1 = 7.5dB (假設(shè))
IIP31 = +29dBm
OIP31 = IIP31 + G1 = +21.5dBm
將MAX9993的典型指標(biāo)作為PCS和UMTS頻帶的典型參數(shù):
Gsys = 系統(tǒng)總增益 = +8.5dB
NFsys = 系統(tǒng)噪聲系數(shù) = 9.5dB
IIP3sys = 系統(tǒng)輸入三階截點(diǎn) = +23.5dBm
OIP3sys = 系統(tǒng)輸出三階截點(diǎn) = +32dBm
所需中頻放大器增益:
由下式確定中頻放大器的增益:
Gsys = 8.5dB
= G1 + G2由此解得G2,
G2 = Gsys - G1 = 8.5dB - (-7.5dB)
= 16dB
所需中頻放大器噪聲系數(shù):
為了得到9.5dB的串聯(lián)噪聲系數(shù),假定無(wú)源混頻器的噪聲系數(shù)等于7.5dB,使用通用的串聯(lián)噪聲系數(shù)方程可求得所要求的中頻放大器噪聲系數(shù),其中,噪聲系數(shù)(以dB為單位)等于10 * log (噪聲系數(shù))。
NFsys = 9.5dB
= 10 * log (系統(tǒng)噪聲系數(shù))
= 10 * log (Fsys)
= 10 * log (F1 + (F2 - 1) / G1)
用下式求解NF2:
NF2 = 10 * log ((Fsys - F1) * G1 + 1)
= 10 * log ((10^(9.5 / 10) - 10^(7.5 / 10)) * (10^(-7.5 / 10)) + 1)
= 10 * log ((8.91 - 5.62) * 0.18 + 1)
= 10 * log (1.59)
= 2dB
所需中頻放大器三階截點(diǎn):
使用串聯(lián)輸入截點(diǎn)方程確定中頻放大器的輸入三階截。
IIP3sys (dBm) = +23.5dBm
= 10 * log (IIP3值)
= 10 * log (1 / (1/10^(IIP31 / 10) + 10^(G1 / 10) / 10^(IIP32 / 10)))
求解 以確定中頻放大電路所要求的三階截點(diǎn):
IIP32 (dBm) = 10 * log (10^(G1 / 10) * (1 / (1 / 10^(IIP3sys / 10) - 1 / 10^(IIP31 / 10))))
= 10 * log (10^(-7.5/10) * (1 / (1 / 10^(23.5 / 10) - 1 / 10^(29 / 10))))
= 17.5dBm
由可得到放大器的輸出三階截點(diǎn)如下:
OIP32 (dBm) = OIP32 + G2
= +17.5dBm + 16dB
= +33.5dBm
串聯(lián)結(jié)果
圖3總結(jié)了等效的串聯(lián)參數(shù):
圖3. 無(wú)源混頻器與中頻放大器的串聯(lián)響應(yīng)
由計(jì)算所得的中頻放大器參數(shù)可知,要找到一個(gè)具有16dB增益和2dB噪聲系數(shù)的中頻放大器非常困難,而且使用該分立方案不能達(dá)到MAX9993所具備的二階線(xiàn)性指標(biāo)。另外,還至少需要一個(gè)或兩個(gè)外部本振放大器,以產(chǎn)生Mini-Circuits HJK-19MH混頻器所要求的+13dBm本振驅(qū)動(dòng)電平。
結(jié)論
設(shè)計(jì)接收機(jī)時(shí),設(shè)計(jì)人員在選擇集成混頻器方案時(shí)會(huì)顧及到計(jì)算分立方案的等效串聯(lián)指標(biāo),而后將其與Maxim的集成混頻器比較。本文明確給出了集成混頻器方案與分立混頻器方案相比所具備的優(yōu)點(diǎn)。比較兩種方案時(shí),必須考慮的重要參數(shù)包括:變頻增益、噪聲系數(shù)和線(xiàn)性度(主要是二階和三階)。本應(yīng)用筆記也給出了計(jì)算串聯(lián)參數(shù)的正確方法。