《電子技術應用》
您所在的位置:首頁 > 通信與網(wǎng)絡 > 設計應用 > 基于粒子濾波的JPDA多目標跟蹤算法
基于粒子濾波的JPDA多目標跟蹤算法
來源:微型機與應用2010年第21期
李 龍,秦超英,黃樹峰
(西北工業(yè)大學 理學院應用數(shù)學系,陜西 西安 710129)
摘要: 對于非線性非高斯系統(tǒng)的多目標跟蹤問題,在已獲得各目標初始信息和觀測信息的基礎上,結合聯(lián)合概率數(shù)據(jù)關聯(lián)算法,提出了一種基于數(shù)值積分粒子濾波的多目標跟蹤算法。仿真結果表明,該算法在解決非線性非高斯系統(tǒng)的多目標跟蹤問題時是可行有效的。
Abstract:
Key words :

摘  要: 對于非線性非高斯系統(tǒng)的多目標跟蹤問題,在已獲得各目標初始信息和觀測信息的基礎上,結合聯(lián)合概率數(shù)據(jù)關聯(lián)算法,提出了一種基于數(shù)值積分粒子濾波的多目標跟蹤算法。仿真結果表明,該算法在解決非線性非高斯系統(tǒng)的多目標跟蹤問題時是可行有效的。
關鍵詞: 數(shù)值積分;粒子濾波;非線性非高斯;數(shù)據(jù)關聯(lián)

    多目標跟蹤的基本概念是Wax于1955年提出的,數(shù)據(jù)關聯(lián)和狀態(tài)估計是其兩個重要方面[1]。1964年,Sittler對多目標跟蹤理論進行了深入研究[2],在20世紀70年代中期,Bar-Shalom提出了概率數(shù)據(jù)關聯(lián)算法(JPDA),該算法有效地解決了雜波環(huán)境下的目標跟蹤問題[2-3]。
    對于非線性非高斯系統(tǒng),蒙特卡洛方法和粒子濾波器[4-5](PF)得到廣泛地研究與應用。其中,差商濾波[6]是一種以Stirling插值公式為基礎構建的濾波器,它在序貫濾波中能準確地捕獲并傳遞系統(tǒng)狀態(tài)的統(tǒng)計特性。為此,本文提出了一種基于數(shù)值積分粒子濾波的多目標跟蹤算法,該算法使用差商濾波器產(chǎn)生重要密度函數(shù),采用序貫采樣來逼近系統(tǒng)狀態(tài)的后驗概率,結合聯(lián)合概率數(shù)據(jù)關聯(lián)算法,基于最小均方誤差估計得到系統(tǒng)在各個時刻的狀態(tài)估計值,以實現(xiàn)對多目標的跟蹤。
1 基本粒子濾波
    假設非線性動態(tài)時變系統(tǒng)方程為:


其中,δ為克羅內(nèi)克函數(shù),由大數(shù)定律可知式(3)等價于下式:

    (3)重要采樣。根據(jù)上述重要函數(shù)進行采樣,得到服從高斯分布的預測樣本:



    圖1為目標跟蹤軌跡與真實軌跡比較圖,由圖可見本文算法在實現(xiàn)目標跟蹤過程中,對目標運動狀態(tài)的跟蹤具有較高的精度。圖2為兩目標的位置均方根誤差曲線圖,反映了隨著時間的增加,位置估計誤差的變化情況,由圖可見各目標位置誤差迅速減小并趨于穩(wěn)定。仿真表明,在閃爍噪聲情況下,基于數(shù)值積分粒子濾波和聯(lián)合概率數(shù)據(jù)關聯(lián)的多目標跟蹤算法收斂速度快、精度高,能夠?qū)δ繕诉M行有效精確地跟蹤。

    在粒子濾波算法的基礎上,基于聯(lián)合概率數(shù)據(jù)關聯(lián)算法,研究了非線性非高斯情形下的多目標跟蹤問題,給出了相應的跟蹤算法。仿真結果表明,基于數(shù)值積分粒子濾波的JPDA多目標跟蹤算法,對于解決非線性非高斯情況下的多目標跟蹤問題是有效可行的。
參考文獻
[1] 康耀紅.數(shù)據(jù)融合理論與應用[M].西安:西安電子科技大學出版社,1997.
[2] BAR S Y, BIRMIWAL K. Consistency and robustness of PDAF for target tracking in cluttered environments[J]. Automatica, 1983,19(4):431-437.
[3] 秦衛(wèi)華,胡飛,秦超英.一種簡化的聯(lián)合概率數(shù)據(jù)關聯(lián)算法[J].西北工業(yè)大學學報,2005,23(2):276-279.
[4] ABDALLAH F, GNING A, BONNIFAIT P. Box particle filtering for nonlinear state estimation using interval analysis[J]. Automatica, 2008,44(3):807-815.
[5] LANG L, CHEN W, BAKSHI B R, et al. Bayesian estimation via sequential monte carlo sampling -constrained dynamic systems[J]. Automatica, 2007,43(9):1615-1622.
[6] NORGAARD M, POULSEN N K, RAVN O. New developments in state estimation for nonlinear system[J]. Automatica, 2000,36(11):1627-1638.
[7] 程水英,張劍云.粒子濾波評述[J].宇航學報,2008, 29(4):1099-1111.
[8] 劉國成,王永驥.一種基于改進粒子濾波的多目標跟蹤算法[J].控制與決策,2009,24(2):317-320.

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉載。