《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于連續(xù)波多普勒的超聲成像系統(tǒng)設(shè)計(jì)
基于連續(xù)波多普勒的超聲成像系統(tǒng)設(shè)計(jì)
摘要: 連續(xù)波多普勒(CWD)接收器新一代解決方案采用了已經(jīng)投產(chǎn)的高集成度、雙極型放大器和CWD混頻器/波束成型芯片組。新方案能夠保證CWD接收機(jī)無法做出妥協(xié)的診斷特性。采用雙極型放大器和CWD混頻器波束成型電路能夠使系統(tǒng)達(dá)到“高端”CWD的指標(biāo),在下一代結(jié)構(gòu)緊湊的超聲設(shè)備中有效改善診斷工具的性能。
Abstract:
Key words :

  摘要:

  連續(xù)波多普勒" title="多普勒">多普勒(CWD" title="CWD">CWD)接收器新一代解決方案采用了已經(jīng)投產(chǎn)的高集成度、雙極型放大器和CWD混頻器/波束成型芯片組。新方案能夠保證CWD接收機(jī)無法做出妥協(xié)的診斷特性。采用雙極型放大器和CWD混頻器波束成型電路能夠使系統(tǒng)達(dá)到“高端”CWD的指標(biāo),在下一代結(jié)構(gòu)緊湊的超聲設(shè)備中有效改善診斷工具的性能。

  典型的相控陣CWD(連續(xù)波多普勒)架構(gòu)中,超聲傳感器的聚焦孔徑分成兩部分,一半的(64至128個)傳感器單元用于發(fā)送器,另一半用于接收器。作用在發(fā)射單元的信號是方波信號,典型頻率為2.0 MHz至7.5 MHz多普勒頻率。發(fā)射單元通過發(fā)送適當(dāng)相位的信號聚焦發(fā)射波束。同樣,CWD接收信號通過對每個接收單元的信號進(jìn)行相位調(diào)整、求和進(jìn)行聚焦?! ?/p>

  “波束成型”CWD接收信號是由固態(tài)組織反射的強(qiáng)信號(通常稱其為雜波)以及流動的血液反射回來的較弱的多普勒信號。每個相控陣接收通道輸入端的典型雜波可能高達(dá)100mVp-p,而接收機(jī)RTI的噪底只有1至2nV/。為了優(yōu)化接收性能,需要每通道的SNR達(dá)到155dBc/。  

  對于一個64通道的CWD接收機(jī),考慮到求和增益,求和后的“波束成型”信號需要額外的18dB動態(tài)范圍,整體信噪比SNR的要求會達(dá)到173dBc/!更加困難的是,感興趣的低速多普勒信號的頻率會在1kHz以內(nèi)或低于雜波信號。由此可見超聲檢測設(shè)備面臨巨大的設(shè)計(jì)挑戰(zhàn)。目前,超聲系統(tǒng)大多采用模擬延時線接收器實(shí)現(xiàn)CWD信號檢測(圖1),來自超聲接收單元的輸入信號經(jīng)過緩沖、放大,低噪聲放大器提供大約20dB的增益。LNA" title="LNA">LNA輸出被轉(zhuǎn)換成電流信號,隨后通過交叉開關(guān)和模擬延時線進(jìn)行波束成型。這種架構(gòu)很容易集成,因?yàn)樗枰碾妷?電流轉(zhuǎn)換器、模擬開關(guān)、無源延時線以及單路I/Q混頻器很容易集成。通過配置交叉開關(guān)求和,通過適當(dāng)?shù)难訒r線抽頭切換信號,達(dá)到每個接收器的延時要求?! ?/p>

  波束成型后的RF CWD信號混頻后得到基帶I、Q信號,這兩路信號經(jīng)過帶通濾波后進(jìn)行數(shù)字轉(zhuǎn)換。RF至基帶的混頻處理通常是接收鏈路保證SNR的瓶頸,這個處理過程對CWD的性能影響較大,對于64通道設(shè)計(jì)示例,I、Q RF混頻器需要在處理波束成型信號時具有173dBc/ (1kHz頻偏)的動態(tài)范圍。能夠達(dá)到這一指標(biāo)的混頻器很難實(shí)現(xiàn),此外,本振驅(qū)動信號還必須保持極低的抖動。遺憾的是很難從市場上獲得能夠達(dá)到這樣指標(biāo)的邏輯器件—雖然CWD延時線能夠滿足結(jié)構(gòu)緊湊的超聲系統(tǒng)的最低要求,因此,上述性能的局限性是亟待解決的問題。

基于CWD延時線的接收機(jī)簡化電路

圖1  基于CWD延時線的接收機(jī)簡化電路  

  為了獲得更高性能,在CWD系統(tǒng)中引入一個CWD混頻器/波束成型器,簡化框圖如圖2所示。該架構(gòu)中,每個通道都具有一個I/Q混頻器,在基帶端(而非RF端)進(jìn)行波束成型求和;每路I/Q混頻器的LO相位可以調(diào)節(jié)在N (N = 8至16相)個相位中的一種。LO相位的變化將改變接收信號的相位,達(dá)到波束成型的目的?! ?/p>

  由于混頻器的實(shí)現(xiàn)基于每個通道,對每個通道混頻器的要求可以降低到155dBc/Hz (1kHz頻偏)。這一指標(biāo)雖然苛刻,但利用雙極型混頻器和標(biāo)準(zhǔn)邏輯器件可以實(shí)現(xiàn)?;祛l器輸出為電流,而且在基帶進(jìn)行無源求和,可以滿足CWD波束成型的SNR要求。

低功耗LNA和CWD混頻器/波束成型電路能夠簡化CWD接收機(jī)設(shè)計(jì)

圖2  低功耗LNA和CWD混頻器/波束成型電路能夠簡化CWD接收機(jī)設(shè)計(jì),獲得高性能  

  過去,由于缺乏適當(dāng)?shù)募晒に?,很難實(shí)現(xiàn)高性能的波束成型架構(gòu)。但目前這一問題已經(jīng)得到解決,完全集成的8通道VGA和8通道CWD I/Q混頻器以及配套的可編程LO驅(qū)動器已經(jīng)開始供貨,圖3所示給出了這類器件MAX2038接收鏈路的示圖。采用這種架構(gòu)可以使超聲系統(tǒng)達(dá)到優(yōu)異的CWD性能,不存在上述延時線CWD架構(gòu)的局限性。

簡化后的單通道超聲接收機(jī),采用MAX2038單芯片8路I/Q混頻器和MAX2034 4路LNA,有效提高系統(tǒng)性能

圖3  簡化后的單通道超聲接收機(jī),采用MAX2038單芯片8路I/Q混頻器和MAX2034 4路LNA,有效提高系統(tǒng)性能  

  構(gòu)建CWD接收器的另外一個潛在問題是LNA放大器的SNR指標(biāo),為了降低功耗、減小尺寸,許多超聲設(shè)計(jì)人員選擇了CMOS LNA,這樣的器件可能適合某些能夠控制CWD性能的應(yīng)用。利用幾何尺寸低于0.35μm的CMOS工藝制作放大器時,1/f噪聲很大。這種噪聲會引起LNA增益的低頻調(diào)制。較強(qiáng)的RF CWD雜波通過這種LNA時將產(chǎn)生較大的低頻調(diào)制噪聲,從而降低SNR指標(biāo)和CWD檢測靈敏度。因此,為了滿足高性能的應(yīng)用需求,應(yīng)選擇類似于MAX2034 4通道超聲LNA的雙極型低噪聲放大器。

  參考文獻(xiàn):

  [1]  MAX2038數(shù)據(jù)手冊,Maxim公司

  [2]  MAX2034數(shù)據(jù)手冊,Maxim公司

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。