《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 微波|射頻 > 設(shè)計(jì)應(yīng)用 > 低壓驅(qū)動(dòng)RF MEMS開(kāi)關(guān)設(shè)計(jì)與模擬
低壓驅(qū)動(dòng)RF MEMS開(kāi)關(guān)設(shè)計(jì)與模擬
閆 闈
摘要: RFMEMS開(kāi)關(guān)存在驅(qū)動(dòng)電壓高、開(kāi)關(guān)時(shí)間長(zhǎng)等問(wèn)題,利用ANSYS對(duì)電容式開(kāi)關(guān)加以改進(jìn),設(shè)計(jì)扭轉(zhuǎn)臂杠桿與打孔電容膜相結(jié)合的新型開(kāi)關(guān)。通過(guò)靜電耦合與模態(tài)分析的仿真,可以在理論上改善RFMEMS開(kāi)關(guān)的射頻性能,并有工藝的可行性。
Abstract:
Key words :

近年來(lái)射頻微電子系統(tǒng)(RF MEMS)器件以其尺寸小、功耗低而受到廣泛關(guān)注,特別是MEMS開(kāi)關(guān)構(gòu)建的移相器與天線(xiàn),是實(shí)現(xiàn)上萬(wàn)單元相控陣?yán)走_(dá)的關(guān)鍵技術(shù),在軍事上有重要意義。在通信領(lǐng)域上亦憑借超低損耗、高隔離度、成本低等優(yōu)勢(shì)在手機(jī)上得到應(yīng)用。然而RF MEMS開(kāi)關(guān)普遍存在驅(qū)動(dòng)電壓高、開(kāi)關(guān)時(shí)間長(zhǎng)的問(wèn)題,劣于FET場(chǎng)效應(yīng)管開(kāi)關(guān)和PIN二極管開(kāi)關(guān)。相對(duì)于國(guó)外已取得的成果,國(guó)內(nèi)的研究尚處于起步階段。下文將針對(duì)MEMS開(kāi)關(guān)的缺陷做一些改進(jìn)。

1 RF MEMS開(kāi)關(guān)的一般考慮
   
當(dāng)MEMS開(kāi)關(guān)的梁或膜受靜電力吸引向下偏移到一定程度時(shí)達(dá)到閾值電壓,梁或膜迅速偏移至下極板,電壓大小取決于材料參數(shù)、開(kāi)關(guān)尺寸及結(jié)構(gòu)。梁或膜的材料需要比較好的楊氏模量與屈服強(qiáng)度,楊氏模量越大諧振頻率就越高,保證工作的高速穩(wěn)定及開(kāi)關(guān)壽命;尺寸設(shè)計(jì)上要考慮靜電驅(qū)動(dòng)力的尺寸效應(yīng);結(jié)構(gòu)的固有振動(dòng)頻率則影響開(kāi)關(guān)的最高工作速度。單從結(jié)構(gòu)上看,降低驅(qū)動(dòng)電壓的途徑為:降低極板間距;增加驅(qū)動(dòng)面積;降低梁或膜的彈性系數(shù)。常見(jiàn)的結(jié)構(gòu)有串、并聯(lián)懸臂梁開(kāi)關(guān)、扭轉(zhuǎn)臂開(kāi)關(guān)和電容式開(kāi)關(guān),前三者為電阻接觸式,金屬與信號(hào)線(xiàn)外接觸時(shí)存在諸如插入損耗大等很多問(wèn)題,而電容接觸式開(kāi)關(guān)的絕緣介質(zhì)也存在被擊穿的問(wèn)題。有研究表明,所加電壓越高開(kāi)關(guān)的壽命越短,驅(qū)動(dòng)電壓的降低勢(shì)必導(dǎo)致開(kāi)關(guān)速度變慢,如何同時(shí)滿(mǎn)足驅(qū)動(dòng)電壓和開(kāi)關(guān)速度的要求是當(dāng)前的困難所在。

2 RIF MEMS開(kāi)關(guān)的模擬與優(yōu)化
   
對(duì)于電容式開(kāi)關(guān),驅(qū)動(dòng)電壓隨著橋膜長(zhǎng)度的增加而下降,橋膜殘余應(yīng)力越大驅(qū)動(dòng)電壓也越大。通常把楊氏張量78 GPa、泊松比O.44的Au作為橋膜材料,為獲得好的隔離度要求開(kāi)關(guān)有大的電容率,這里選介電常數(shù)為7.5的S3N4作為介質(zhì)層,橋膜單元為Solid98,加5 V電壓,電介質(zhì)為空氣,下極板加O V電壓。然后用ANSYS建模、劃分網(wǎng)格、加載并求解靜電耦合與模態(tài)分析。5 V電壓下的開(kāi)關(guān)形變約為O.2 μm左右,尚達(dá)不到低壓驅(qū)動(dòng)要求。提取開(kāi)關(guān)前五階模態(tài)如圖1所示。
    可見(jiàn)開(kāi)關(guān)從低階到高階的共振頻率越來(lái)越大,分別為79.9 kHz,130.3 kHz,258.8 kHz,360.7 kHz,505.6 kHz,一階模態(tài)遠(yuǎn)離其他模態(tài),即不容易被外界干擾,只有控制開(kāi)關(guān)頻率低于一階模態(tài)的諧振頻率才能保證其穩(wěn)定工作。由于實(shí)際開(kāi)關(guān)時(shí)間仍不理想,所以在膜上挖孔以減小壓縮模的阻尼,從而增加開(kāi)關(guān)速度。雖然關(guān)態(tài)的電容比下降了,但孔可以減輕梁的重量,得到更高的力學(xué)諧振頻率。最終的模型共挖了100個(gè)孔,并對(duì)兩端做了彎曲處理以降低驅(qū)動(dòng)電壓,仿真得到5 V電壓下形變?yōu)?μm以上、穩(wěn)定的開(kāi)關(guān)時(shí)間在5μs以下的電容式開(kāi)關(guān),如圖2所示。


    考慮到電容式開(kāi)關(guān)仍存在的介質(zhì)擊穿問(wèn)題,這里對(duì)其結(jié)構(gòu)加以改進(jìn),將扭轉(zhuǎn)臂杠桿與打孔電容膜相結(jié)合,在減小驅(qū)動(dòng)電壓和提高開(kāi)關(guān)速度的同時(shí),又不影響電容比,一定程度上抑制了電擊穿。其工作原理是:push電極加電壓時(shí)杠桿上抬,介質(zhì)膜與接觸膜間距離增大導(dǎo)致其耦合電容很小,信號(hào)通過(guò)傳輸線(xiàn);pull電極加電壓時(shí)杠桿下拉,耦合電容變大,微波信號(hào)被反射。材料選擇上仍以Au和S3N4為主,某些部分可用A1代替Au。結(jié)構(gòu)與尺寸的設(shè)計(jì)上由超越方程與開(kāi)關(guān)通斷下的電容方程得到估計(jì)值,下極板為25×25(單位制采用μMKSV,長(zhǎng)度單位為μm,下同),其上附有絕緣介質(zhì)層,孔為3.4×3.4,杠桿為100x30,結(jié)構(gòu)層為20×20,極板厚度為1。用ANSYS仿真得到圖3所示結(jié)果。


    在A(yíng)NSYS做靜電耦合與模態(tài)分析后利用ANSOFT HFSS對(duì)該開(kāi)關(guān)進(jìn)行3D電磁場(chǎng)仿真,進(jìn)一步求得其插入損耗與隔離度,確定共面波導(dǎo)和接觸膜的結(jié)構(gòu),從而完善開(kāi)關(guān)的射頻性能。建模時(shí)忽略開(kāi)關(guān)的彎曲,定義材料特性與空氣輻射邊界,利用wave port端口進(jìn)行仿真,分別求解開(kāi)態(tài)的插入損耗和關(guān)態(tài)的隔離度。介質(zhì)層較薄時(shí),開(kāi)關(guān)在10 GHz附近具有良好的隔離度,且插入損耗在1 dB以下。

3 RF MEMS開(kāi)關(guān)的制備工藝
    合理選擇生長(zhǎng)介質(zhì)膜的工藝對(duì)開(kāi)關(guān)性能有很大影響,本文的RF MEMS開(kāi)關(guān)需要在基底表面生長(zhǎng)一層氮化硅膜,一般選擇LP-CVD工藝,而介質(zhì)膜則選擇PECVD工藝為宜,金屬膜的性能要求相對(duì)較低,用濺射方法即可??紤]到基底要求漏電流與損耗盡可能小,選取高阻硅與二氧化硅做基底,后者保證了絕緣要求。金質(zhì)信號(hào)線(xiàn)與下極板通過(guò)正膠剝離形成,電子束蒸發(fā)得到鋁質(zhì)上極板。但從可行性考慮,部分方案的工藝實(shí)現(xiàn)對(duì)于國(guó)內(nèi)的加工工藝尚有難度,只能犧牲微系統(tǒng)的性能來(lái)達(dá)到加工條件。

4 結(jié)語(yǔ)
    本文主要從結(jié)構(gòu)上進(jìn)行了創(chuàng)新,通過(guò)計(jì)算機(jī)輔助設(shè)計(jì)仿真分析得到了理論解,一定程度上滿(mǎn)足了設(shè)計(jì)初衷,但在工藝上還不成熟。更低的驅(qū)動(dòng)電壓和更高的開(kāi)關(guān)頻率仍是亟待解決的問(wèn)題,另外如何保證實(shí)際產(chǎn)品的可靠性、實(shí)用性也是未來(lái)的研究重點(diǎn)。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。