O 引言
滾動軸承是列車轉動機件的支撐,也是鐵路車輛上最容易危及行車安全的易損件。由于工作面接觸應力的長期反復作用,極易引起軸承疲勞、裂紋、壓痕等故障,導致軸承斷裂,造成重大事故。軸承工作狀態(tài)是否正常,對于列車的安全有著重大的影響。因此,開展列車滾動軸承故障診斷的研究對避免重大事故、促進經濟發(fā)展具有相當大的意義。
1 系統(tǒng)總體設計
1.1 硬件系統(tǒng)
振動控制系統(tǒng)是一個典型的實時信號處理系統(tǒng),需要對較復雜的信號進行處理??紤]到單片機的控制功能強,其總線位數少,運行速度相對較慢;而DSP(Digital Signal Processor)的運算能力強,總線寬度寬,控制功能相對較弱。為了提高系統(tǒng)的信號處理速度,便于對系統(tǒng)的硬件和軟件的進一步開發(fā),結合單片機的控制能力,設計了DSP+MCU的方案,如圖1所示。該系統(tǒng)是一個基于定點DSP芯片TMS320C32的滾動軸承振動故障診斷系統(tǒng),主要適用于對滾動軸承振動信號的采集、處理和故障診斷,并通過軸承溫度信號實現對軸承工作狀態(tài)的監(jiān)測。
滾動軸承的振動信號屬于高頻信號,因此應用加速度傳感器進行信號的拾取。但由于加速度傳感器所測得的信號較弱,必須經過電荷放大器、抗混濾波等系列電路處理后才能進入高速A/D轉換電路,保證了數據分析所需的數據量,能實現對采集數據的幅值域、時域和頻域分析。處理后的振動信號和經單片機采集到的溫度數據均送到DSP處理器進行處理分析,作出故障預報和診斷。對已形成的或正在形成的故障進行分析處理,判斷出故障產生的部位及原因,并及時采取有效的措施。單片機負責執(zhí)行顯示和DSP子系統(tǒng)的控制功能,包括DSP的命令解釋、數據傳輸控制、數據的輸入/輸出等控制功能,使DSP可以執(zhí)行高速、實時的DSP算法。存貯器包括程序儲存器和數據儲存器,用于儲存用戶程序(EPROM)和實時數據(RAM)。
1.2 軟件系統(tǒng)
軟件采用模塊化設計思想,使系統(tǒng)的維護、改進和功能擴展十分方便,還可進一步推廣到其他振動信號的采集和分析。
1.2.1 系統(tǒng)軟件主程序
軸承故障診斷系統(tǒng)的主要任務是對采集的信號進行分析和處理,因此軟件設計的好壞直接影響數據處理的能力。系統(tǒng)軟件由主程序、串行口中斷服務、INT0中斷服務程序和數據處理程序組成。主程序完成AD574A芯片初始化、8751H的初始化、TMS320C32復位、包括從FLASH存儲器中讀取已經存入的振動信號的各種信息。完成初始化過程后,TMS320C32等待從875lH主處理器發(fā)出的各種命令,根據不同命令調用相應的處理子程序,系統(tǒng)軟件框圖如圖2所示。中斷服務程序每隔10 ms中斷一次,并置各種定時到達標志以便主程序判斷使用。串行中斷服務程序主要完成振動信號的輸入、輸出等功能。INT0中斷服務程序主要用于接收從8751H發(fā)出的各種命令,并設置相應的命令標志以便于TMS320C32在主程序中識別并調用相應的子程序。
1.2.2分析處理程序
本系統(tǒng)利用DSP強大的數字信號處理功能,對采樣得到的數據進行FFT運算和功率譜分析,更好地提取數據中的特征信息,加快系統(tǒng)的響應速度和提高準確度。
(1)FFT分析運算子程序
FFT分析運算子程序利用FFT計算相關函數。為防止發(fā)生頻疊現象,需要延長線性相關中序列的長度,即延長到兩序列長度之和2N。自相關函數的快速傅里葉變換計算過程如下:
(2)功率譜分析運算子程序
平均周期功率譜分析首先要把序列X(n)分成K段,每段長為N,然后對每段進行功率譜分析。平均周期法的每一段譜分析就是求該段的離散傅里葉變換,再除以分析點數。這樣的譜估計一共有K段,對K段譜估計求平均就得到平均周期功率譜分析。
(3)倒譜分析運算子程序
倒譜分析是對信號y(t)的功率譜的對數進行傅里葉逆變換。倒譜分析的離散運算形式為:
2 故障診斷
2.1 提取軸承特征
小波分析利用時間平移和多分辨率的概念,可以同時處理時、頻分析,具有時頻局部化和多分辨功能。其基本思想是用一族函數去表示或逼近一信號或函數,通過滿足一定條件的基本小波函數的不同尺度的平移和展縮構成的。但在正交小波變換中,只對信號的低頻成分進行了遞推分解,導致高頻成分的頻率分辨率較低,表現為時一頻分辨率在低頻處頻率分辨率高,在高頻處時間分辨率高,頻率分辨率卻降低。利用DSP強大的數字處理功能,本系統(tǒng)采用常見的Hilbert變換法來提取包絡信號,提高整個系統(tǒng)的可靠性和精確性。
實信號X(t)的Hilbert變換為:
2.2 小波奇異性檢測
函數f(x)的局部奇異性與其小波變換的漸進衰減性之間的關系為:
式中:Wsf(x)為f(x)在尺度s上的小波變換。
本文根據小波變換各尺度上模極大值的傳遞性來判斷奇異點的位置以及作奇異性指數計算。奇異性指數的計算如下:
設s=2j,在尺度i上Xk處的極大值為Mi=| Wsf(x)|,則在各尺度相應位置處的模極大值可構成序列{Mi},在i較小時,可以近似為:
由此可得:
根據上式計算幾個尺度上的α,然后求平均值,即可得到信號在此時刻的Lip指數。
3 實例分析
實驗用軸承參數如下:滾動體直徑:O.84235英寸;支架直徑:7.5653英寸;輪子直徑:35.89英寸;接觸角α:10°;車速:30 km/h。
當軸承外圈滾道發(fā)生點蝕、裂紋及表面剝落等局部損傷故障后,滾動軸承便產生沖擊振動。利用加速度傳感器獲取軸承振動信號,采樣頻率為261436SPS,滾動軸承正常、滾子破裂、多處外圈剝落時振動信號的時域波形如圖3所示。按照前述方法對外圈剝落振動信號進行包絡處理,并采用B樣條函數進行7層小波變換,得到信號包絡在特征尺度
重構信號如圖4所示。
通過檢測經小波變換的模量極大點沿尺度的演變規(guī)律,可將噪聲所產生的模量極大點與信號產生的模量極大點區(qū)分開。如果某模量極大點的幅值沿尺度的減小而顯著增加,則為是由噪聲產生的而予以剔除。為了考察模量極大點沿尺度的傳播性,本文采用一個簡單的方法做初步判斷,即:如果某一尺度上的一個模量極大點的位置非常接近下一個尺度的一個模量極大點,并且它們具有相同的符號,那么可以認為該模量極大點傳播到了下一個尺度上,否則即為沿尺度不傳播的模量極大點,予以剔除。經過篩選所保留下來的各個尺度上的模量極大點就反映了包絡信號的主要特征。圖5分別表示正常、滾子破裂、多處外圈剝落三種情況的Lip指數分布(縱坐標(-1<α<1),橫坐標(O~500)),Lip指數如表1所示。
從圖5可以看出:由故障軸承與正常軸承相比,其信號奇異點明顯增多。由表1可看出在同一時刻附近故障軸承的Lip指數明顯較小,在同一時刻附近多處外圈剝落的Lip指數較小,故障較嚴重,這與實際解體檢測情況一致。
4 結語
該系統(tǒng)充分利用單片機的控制功能強、DSP的運算能力強的特點,對較復雜的信號具有較強的處理能力。實驗表明,該系統(tǒng)能滿足列車滾動軸承故障診斷的實際需要,并減少了復雜的編程過程,有效地提高了工作效率,降低了診斷設備成本。