由于鋰電池的體積密度、能量密度高,并有高達(dá)4.2V的單節(jié)電池電壓,因此在手機、PDA和數(shù)碼相機等便攜式電子產(chǎn)品中獲得了廣泛的應(yīng)用。為了確保使用的安全性,鋰電池在應(yīng)用中必須有相應(yīng)的電池管理電路來防止電池的過充電、過放電和過電流。鋰電池保護IC超小的封裝和很少的外部器件需求使它在單節(jié)鋰電池保護電路的設(shè)計中被廣泛采用。
然而,目前無論是正向(獨立開發(fā))還是反向(模仿開發(fā))設(shè)計的國產(chǎn)鋰電池保護IC由于技術(shù)、工藝的原因,實際參數(shù)通常都與標(biāo)準(zhǔn)參數(shù)有較大差別,在正向設(shè)計的IC中尤為突出,因此,測試鋰電池保護IC的實際工作參數(shù)已經(jīng)成為必要。目前市場上已經(jīng)出現(xiàn)了專用的鋰電池保護板測試儀,但價格普遍偏高,并且測試時必須先將IC焊接在電路板上。因此,本文中設(shè)計了一個簡單的測試電路,借助普通的電子儀器就可以完成對鋰電池保護IC的測試。
鋰電池保護IC的工作原理
單節(jié)鋰電池保護IC的應(yīng)用電路很簡單,只需外接2個電阻、2個電容和2個MOSFET,其典型應(yīng)用電路如圖1所示。
圖1 鋰電池保護IC的典型應(yīng)用電路 |
鋰電池保護IC測試電路設(shè)計
圖2 鋰電池保護IC測試電路 |
根據(jù)鋰電池保護IC的工作原理設(shè)計的測試電路如圖2所示,圖3詳細(xì)說明了圖2中模塊B的電路。模塊A在測試過流保護時為CS引腳提供電壓,模擬圖1中的CS引腳所探測到的電壓。調(diào)整模塊中的可變電位器可為CS引腳提供可變電源,控制其中的跳變開關(guān)可為CS提供突變電壓。模塊B為電源,模擬為IC提供工作電壓。調(diào)整電路中的可變電位器R7可為整個電路提供一個可變電壓,在測試過充電保護電壓和過放電保護電壓時使用??刂颇K中的開關(guān)S1的閉合為測試電路提供一個跳變電源,在測試IC的過充、過放和過流延遲時使用。跳線端口P1、P2在測試IC工作電流時使用,在測試其他參數(shù)時將開關(guān)S2導(dǎo)通即可。測試IC工作電流時,將電流表接在P1、P2上,將開關(guān)S2斷開。模塊C是用2個MOSFET做成的微電流源,在測試OD、OC輸出高、低電平時向該引腳吸、灌電流,只要MOSFET選擇恰當(dāng),可以滿足測試需要。模塊D是2片MOSFET集成芯片,相當(dāng)于圖1中的M1、M2,其中的兩個端口在測試MOSFET漏電流時使用,在測試其他參數(shù)時要將這兩個端口短接。模塊E是一個IC插座,該插座用于放置待測IC,最多可以放置4片IC(測試時只能放一片IC),測試完以后可以將IC取出,不留任何痕跡,不影響IC的銷售和再次測試。
圖3 模塊B的電路圖 |
在測試電路的設(shè)計中,對電阻的選擇要慎重。在模塊A、B、C中由于有可變電位器的存在,如果其他電阻選擇不適當(dāng)容易造成電路的燒毀,尤其是模塊A和B中的可變電位器的選擇對測試各種電壓的精度影響很大。本電路中兩個可變電位器都是1K/10圈的,精度較高。模塊C中的MOSFET的選擇要注意其工作電流范圍,在測試需要用到的電流只有兩個級別,一個是零點幾個微安,一個是幾十微安,因此一般要求能提供微安級以下的電流。另外,電源的穩(wěn)定度對整個IC測試參數(shù)的影響很大,因此,在測試時盡量使用穩(wěn)定性好的電源。
本設(shè)計的特點
本設(shè)計有以下三個特點。
● 在測試IC過充、過放和過流的延遲時利用開關(guān)將電阻短路或開路來實現(xiàn)電路電源的突變,并且利用示波器同時抓電源和OC、OD跳變波形圖來測量延遲時間。
● 為了實現(xiàn)測試OC、OD高、低電平時向引腳吸、灌電流,本電路用MOSFET做了兩個簡單的微電流源,選用的MOSFET型號為TN0201T,利用柵級電壓控制漏、源級電流,以漏、源級電流為電流源,精度可以達(dá)到0.1μA,基本可以滿足測試的需要。
● 測試過流保護電壓時,即測試使OD引腳從高電平跳變?yōu)榈碗娖降腃S引腳電壓。短流保護電壓遠(yuǎn)高于過流保護電壓,當(dāng)電壓達(dá)到過流保護電壓時電路已經(jīng)發(fā)生跳變,OD輸出一直為低電平,因此常規(guī)方法無法測試出短流保護電壓,于是,本文采用了一種間接的近似測試方法。IC對過電流保護的延遲時間大概為幾個到十幾個毫秒,而短流延遲時間則大概為十幾個微秒,因此可以根據(jù)過流延遲時間與短流延遲時間的不同來近似測試短流保護電壓。此參數(shù)使用專用的鋰電池保護板測試儀也無法測出。
本測試電路也存在一些不足。一是對IC測試的精度與電源穩(wěn)定度、電表精度有關(guān),其中,對各種電壓測試的精度還與可變電位器的精度有關(guān);二是短流保護電壓測得的是近似值。
總結(jié)
雖然目前市場上有很多鋰電池保護板測試儀,但價格昂貴,并且測試參數(shù)固定,不能滿足實際測試的需要。在實際的應(yīng)用中,客戶最注重的鋰電池保護IC的幾個主要參數(shù)為:過充、過放和過流保護電壓、靜態(tài)工作電流和斷電電流、過充、過放和過流保護延遲,以及OD、OC引腳的輸出高、低電平。本文提供的測試方法可以很精確地測出上述參數(shù),已經(jīng)超出了鋰電池保護板測試儀所能測試的參數(shù)。因此,在一些對鋰電池保護IC參數(shù)要求很全面或條件比較受限制的場合,本文提供的測試電路和測試方法是一種較好的選擇。
上述測試電路和測試方法已經(jīng)投入使用,現(xiàn)已成功測試千余片鋰電池保護IC.從測試結(jié)果來看,除了短流保護電壓是近似測試以外,其余參數(shù)測試都與專用的測試儀器測量的結(jié)果非常吻合;從客戶反映情況來看,該測試電路測出的參數(shù)準(zhǔn)確,能滿足客戶需要。由于本測試電路沒有封裝(加外殼),可以根據(jù)客戶的需要增加適當(dāng)電路測試出更多參數(shù)(如本文中提到的測試MOSFET漏電流大小)。