《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 電源技術(shù) > 設(shè)計(jì)應(yīng)用 > 鋰離子電池組的主動(dòng)充電平衡法分析
鋰離子電池組的主動(dòng)充電平衡法分析
摘要: 位于慕尼黑的英飛凌科技公司汽車系統(tǒng)工程部門最近接到一項(xiàng)開發(fā)E-Cart的任務(wù)。E-Cart是一種可駕駛的車輛,主要用于演示混合動(dòng)力汽車的電氣性能。該車將采用一組龐大的鋰離子電池組提供動(dòng)力,當(dāng)時(shí)開發(fā)人員就意識(shí)到對(duì)其進(jìn)行帶充電平衡的電池管理是絕對(duì)必要的。
Abstract:
Key words :

位于慕尼黑的英飛凌科技公司汽車系統(tǒng)工程部門最近接到一項(xiàng)開發(fā)E-Cart的任務(wù)。E-Cart是一種可駕駛的車輛,主要用于演示混合動(dòng)力汽車的電氣性能。該車將采用一組龐大的鋰離子電池" title="鋰離子電池">鋰離子電池組提供動(dòng)力,當(dāng)時(shí)開發(fā)人員就意識(shí)到對(duì)其進(jìn)行帶充電" title="充電">充電平衡的電池管理是絕對(duì)必要的。這種情況下必須采用在各節(jié)電池之間進(jìn)行主動(dòng)能量轉(zhuǎn)移的方式來代替?zhèn)鹘y(tǒng)的簡(jiǎn)單充電平衡方案。他們開發(fā)的主動(dòng)充電平衡系統(tǒng)在材料成本與被動(dòng)方案相當(dāng)?shù)那闆r下能提供更優(yōu)秀的性能(見圖1)。

圖1:E-Cart原型

  電池系統(tǒng)架構(gòu)

  鎳鎘電池與隨后出現(xiàn)的鎳氫電池多年來一直主宰著電池市場(chǎng)。鋰離子電池是最近才進(jìn)入市場(chǎng)的,但由于其性能有極大提高,因此其市場(chǎng)份額增長(zhǎng)非常迅速。鋰離子電池的儲(chǔ)能容量非常驚人,但即便如此,單個(gè)電池單元的容量不論從電壓還是從電流方面仍都太低,不能滿足一個(gè)混合動(dòng)力發(fā)動(dòng)機(jī)的需要。并聯(lián)多個(gè)電池單元可以增大電池所提供的電流,串聯(lián)多個(gè)電池單元?jiǎng)t可以增大電池提供的電壓。

  電池組裝商通常利用一些縮略短語來描述其電池產(chǎn)品,例如“3P50S”代表該電池組中有3個(gè)并聯(lián)的電池單元、50個(gè)串聯(lián)的電池單元。

  模塊化結(jié)構(gòu)在對(duì)包含多個(gè)串聯(lián)電池單元的電池進(jìn)行管理時(shí)是很理想的結(jié)構(gòu)。例如,在一個(gè)3P12S的電池陣列中,每12個(gè)電池單元串聯(lián)之后就組成了一個(gè)模塊(block)。然后,這些電池單元就可通過一塊以微控制器為核心的電子電路對(duì)其進(jìn)行管理和平衡。

  這樣一個(gè)電池模塊的輸出電壓取決于串聯(lián)電池單元的個(gè)數(shù)和每個(gè)電池單元的電壓。鋰離子電池單元的電壓通常在3.3V到3.6V之間,因此一個(gè)電池模塊的電壓約在30V到45V之間。

  混合動(dòng)力車的驅(qū)動(dòng)需要450V左右的直流電源電壓。為了根據(jù)充電狀態(tài)來補(bǔ)償電池單元電壓的變化,比較合適的做法是在電池組和發(fā)動(dòng)機(jī)之間連接一個(gè)DC-DC轉(zhuǎn)換器。這個(gè)轉(zhuǎn)換器還可以限制電池組輸出的電流。

  為確保DC-DC轉(zhuǎn)換器工作在最佳狀態(tài),要求電池組電壓在150V到300V之間。因此,需要串聯(lián)5到8個(gè)電池模塊。

  平衡的必要性

  如果電壓超出允許的范圍,鋰離子電池單元就很容易損壞(見圖2)。如果電壓超出了上、下限(以納米磷酸鹽型鋰離子電池為例,下限電壓為2V,上限電壓為3.6V),電池就可能出現(xiàn)不可逆轉(zhuǎn)的損壞。其結(jié)果至少是加快電池的自放電速度。電池輸出電壓在一個(gè)很寬的充電狀態(tài)(SOC)范圍內(nèi)都是穩(wěn)定的,電壓偏離安全范圍的風(fēng)險(xiǎn)很小。但在安全范圍的兩端,充電曲線的起伏相對(duì)比較陡峭。因此,為預(yù)防起見,必須嚴(yán)密監(jiān)控電壓。

圖2:鋰離子電池的放電特性(鈉米磷酸鹽型)。

  如果電壓達(dá)到一個(gè)臨界值,就必需立即停止放電或充電過程。在一個(gè)強(qiáng)大的平衡電路的幫助下,相關(guān)電池單元的電壓可以返回安全范圍內(nèi)。但為達(dá)到這一目的,該電路必需能在電池組中任何一個(gè)單元的電壓開始與其他單元出現(xiàn)差異時(shí)馬上在各單元之間轉(zhuǎn)移能量。

  充電平衡法" title="平衡法">平衡法

  1.傳統(tǒng)的被動(dòng)方法:在一般的電池管理系統(tǒng)中,每個(gè)電池單元都通過一個(gè)開關(guān)連接到一個(gè)負(fù)載電阻。這種被動(dòng)電路可以對(duì)個(gè)別被選中的單元放電。但該方法只適用于在充電模式下抑制最強(qiáng)電池單元的電壓攀升。為限制功耗,此類電路一般只允許以100mA左右的小電流放電,從而導(dǎo)致充電平衡耗時(shí)可高達(dá)幾小時(shí)。

  2.主動(dòng)平衡法:相關(guān)資料中有很多種主動(dòng)平衡法,均需要一個(gè)用于轉(zhuǎn)移能量的存儲(chǔ)元件。如果用電容來做存儲(chǔ)元件,將其與所有電池單元相連就需要龐大的開關(guān)陣列。更有效的方法是將能量存儲(chǔ)在一個(gè)磁場(chǎng)中。該電路中的關(guān)鍵元件是一個(gè)變壓器。電路原型是由英飛凌的開發(fā)小組與VOGT電子元件GmbH公司共同開發(fā)的。其作用是:

  a. 在電池單元之間轉(zhuǎn)移能量

  b. 將多個(gè)單獨(dú)的電池單元電壓復(fù)接至一個(gè)基于地電壓的模數(shù)轉(zhuǎn)換器(ADC)輸入端

  該電路是按照回掃變壓器原理構(gòu)造的。這類變壓器能夠?qū)⒛芰看鎯?chǔ)在磁場(chǎng)中。其鐵氧體磁心中的氣隙增大了磁阻,因此可以避免磁心材料出現(xiàn)磁飽和。

  該變壓器兩側(cè)的電路是不同的:

  a. 初級(jí)線圈與整個(gè)電池組相連

  b. 次級(jí)線圈與每個(gè)電池單元相連

  該變壓器的一種實(shí)用模型支持多達(dá)12個(gè)電池單元。變壓器的可能連接數(shù)量限制了電池單元的個(gè)數(shù)。上述原型變壓器有28個(gè)引腳。

  其中的開關(guān)采用OptiMOS3系列的MOSFET,它們的導(dǎo)通電阻極低,因此其傳導(dǎo)損耗可以忽略不計(jì)(見圖3)。

圖3:電池管理模塊的原理圖

  圖中的每個(gè)模塊都受英飛凌公司的8位先進(jìn)微控制器XC886CLM控制。這種微控制器自帶閃存程序和一個(gè)32KB的數(shù)據(jù)存儲(chǔ)器。此外,它還有兩個(gè)基于硬件的CAN接口,支持通過公共汽車控制器局域網(wǎng)(CAN)總線協(xié)議與下面的處理器負(fù)載通信。它還包含一個(gè)基于硬件的乘除法單元,可用于加快計(jì)算過程。

 

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。