《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 模擬設(shè)計(jì) > 設(shè)計(jì)應(yīng)用 > 基于虛擬多傳感器信息融合的糧情預(yù)警系統(tǒng)
基于虛擬多傳感器信息融合的糧情預(yù)警系統(tǒng)
摘要: 本文通過對小麥倉儲過程中的傳感器信息選取合適的特征和計(jì)算所對應(yīng)的特征統(tǒng)計(jì)量,應(yīng)用少量的傳感器,借助虛擬多傳感器的技術(shù)以及D-S證據(jù)理論融合算法,能夠在糧情監(jiān)測中完成目標(biāo)識別,并對小麥倉儲過程中所發(fā)生的不良變化,及時發(fā)出預(yù)警信息,以確保小麥儲藏安全。
Abstract:
Key words :

1 引言

    糧食在貯藏過程中,會因?yàn)槭軠囟取穸?、氧氣、微生物及昆蟲等因素的影響,而造成其質(zhì)量的不良變化。對糧食貯藏過程中的影響參數(shù)進(jìn)行實(shí)時監(jiān)測、分析是保障糧食儲存品質(zhì)的有效手段。本文通過采用虛擬多傳感器信息融合技術(shù)對糧食儲藏過程中的糧情變化進(jìn)行實(shí)時跟蹤分析,當(dāng)糧食出現(xiàn)霉變、蟲害等不良變化時,系統(tǒng)能及時發(fā)出預(yù)警信息,確保儲糧安全。

2 虛擬多傳感器

    虛擬多傳感器是對一個傳感器所獲的數(shù)據(jù)采用不同的信息處理算法進(jìn)行變換、特征提取, 得到具有不同特征的信息,將這些信息進(jìn)行融合得到更加可靠準(zhǔn)確的信息。其最大的特點(diǎn)就是信息冗余、信息互補(bǔ)和信息實(shí)時。其優(yōu)點(diǎn)就是能減少數(shù)據(jù)量及其計(jì)算量,提高信息的準(zhǔn)確性。在糧食儲藏過程中,通過溫濕度傳感器、高清晰圖像傳感器得到糧食及環(huán)境的溫濕度和圖像信息,對所獲得的溫濕度、圖像信息采用不同的信息處理算法進(jìn)行變換和特征提取,得到具有不同特征信息的虛擬溫濕度、圖像傳感器數(shù)據(jù),然后利用(Dempester-Shafer;D-S)證據(jù)理論將這些信息進(jìn)行融合,可以得到在糧食儲藏過程中糧情的變化過程。其虛擬多傳感器信息融合過程如圖l所示。

    在糧食倉儲過程中,如果儲糧區(qū)域的溫度、濕度在一段時間內(nèi)保持在適合霉菌或害蟲生長的范圍內(nèi),糧食就會發(fā)生霉變或蟲害。通過高精度溫濕度傳感器得到溫濕度的實(shí)時變化數(shù)據(jù)。同時在某種程度上也會造成糧食外觀顏色、體積、紋理等細(xì)微變化。這種變化利用肉眼很難分辨,通過一定算法對圖像進(jìn)行特征提取,得到具有不同特征的虛擬圖像傳感器信息。對這些具有不同特征的信息進(jìn)行融合,可以預(yù)測到糧食發(fā)生霉變或蟲害的時間。

2.1 溫濕度信度變換

    對實(shí)時采集到的實(shí)際溫度值t1,采用(1)式得到溫度的信度值m1;糧食溫度與倉溫的差值的信度值m2,糧食溫度與平均溫度的差值的信度值m3,糧食溫度梯度變化的信度值m4;實(shí)時采集到的實(shí)際濕度值h1,采用(2)式得到濕度的信度值n1;糧食濕度與倉濕的差值的信度值n2,糧食濕度與平均濕度的差值的信度值n3,糧食濕度梯度變化的信度值n4。

   

式中:Ti一經(jīng)驗(yàn)值;ki一加權(quán)系數(shù);ti=1一溫度值。ti=2一糧食溫度與倉溫的差值。ti=3一糧食溫度與平均值的差值。ti=4一糧食溫度梯度值。

   
式中:Hi一經(jīng)驗(yàn)值;ki—加權(quán)系數(shù);hi=1一濕度值。hi=2一糧食濕度與倉濕的差值。hi=3一糧食濕度與平均值的差值。hi=4一糧食濕度梯度值。

2.2 圖像特征提取

    圖像的特征提取,通過對目標(biāo)圖像與源圖像進(jìn)行RGB顏色的相似度、區(qū)域面積的相似度、紋理特征相似度的分析,得到糧情變化的情況。

    RGB顏色的相似度分析。對于圖像的顏色用直方圖可以表示為式(3):

   
其中:A、B、C分別表示所有像素中三基色(RGB)所占的比例。N表示圖像像素?cái)?shù)。所得到RGB圖像(又稱真彩色圖像)是以m×n×3的3D矩陣的方式存儲,分別定義了m×n圖像的每個像素中所包含三基色各自的強(qiáng)度。因此RGB直方圖是對“色階一像素?cái)?shù)”的歸一化統(tǒng)計(jì)結(jié)果。

    對目標(biāo)圖像和源圖像的直方圖統(tǒng)計(jì)結(jié)果,可認(rèn)為是矢量。比較兩幅圖像的顏色相似度,可轉(zhuǎn)化為對矢量空間中兩個點(diǎn)空間距離的計(jì)算。計(jì)算方法可以采用式(4)歐幾里德距離(euclidean distance)。

   
其中:h和g分別代表兩幅圖像的顏色直方圖。

    小麥圖片RGB顏色的相似度的提取如圖2所示。

    區(qū)域面積的提取利用最大類間方差(OTSU)對灰度圖像進(jìn)行自適應(yīng)閾值分割,實(shí)現(xiàn)目標(biāo)的提取。它是按圖像的灰度特性,將圖像分成背景和目標(biāo)兩部分。背景和目標(biāo)之間的類問方差大,說明構(gòu)成圖像的這兩部分的差別越大。當(dāng)部分目標(biāo)錯分為背景或部分背景錯分為目標(biāo)都會導(dǎo)致圖像這兩部分差別變小。因此,使類間方差最大的分割意味著錯分概率最小。小麥圖片區(qū)域面積的提取如圖3所示。

    通過對糧食顆粒的灰度圖像進(jìn)行紋理分析,獲得與結(jié)構(gòu)相關(guān)的灰度分布的統(tǒng)計(jì)信息,可以實(shí)現(xiàn)對兩幅圖像的匹配分析,并作為判斷糧情變化的依據(jù)。對糧食顆?;叶葓D像的分析采用基于不變矩的圖像紋理的統(tǒng)計(jì)算法。該算法首先將原始圖像進(jìn)行分塊,利用加窗傅立葉變換進(jìn)行空域?yàn)V波增強(qiáng),去除圖像在各個空間頻率處的噪聲,增強(qiáng)圖像中的紋理結(jié)構(gòu)信息。然后選擇圖像中曲率最大的點(diǎn)進(jìn)行特征提取,以提取的特征點(diǎn)為中心,對圖像進(jìn)行局部的網(wǎng)格化處理,針對每個單元格計(jì)算其7個不變矩,對所有單元格各自的不變矩求和得到特征向量。同時借助最大類間方差閾值分割方法(OTSU),將圖中的單元格區(qū)分為前景和背景,并在求和時賦予不同的權(quán)重,可進(jìn)一步提高圖像匹配的精度。小麥圖像紋理特征提取過程如圖4所示。最后利用特征空間中兩特征向量間的距離作為相似度衡量的標(biāo)準(zhǔn)??刹捎糜嘞揖嚯x來表示。特征向量間余弦距離的定義為:設(shè)特征空間中兩特征向量分別為

 

   

3 信息融合

    通過以上方法將溫濕度、圖像數(shù)據(jù)經(jīng)過變換,得到具有不同特性的虛擬多傳感器信息。利用D-S證據(jù)理論進(jìn)行信息融合,D-S證據(jù)理論是由Dempster提出來的用概率上下限來表示實(shí)際問題中的不確定性,后來通過ShaRer進(jìn)一步發(fā)展成為系統(tǒng)化、理論化的不確定性推理理論。由于篇幅有限,在此只給出部分信息融合過程。

    通過實(shí)際測量的數(shù)據(jù),經(jīng)過計(jì)算得到某一區(qū)域的四個虛擬傳感器信度值m1,m2,m3,m4如表l,用C表示可信度,N表示不可信度。

    按照Dempster組合公式將m1和m2,m3和m4組合,結(jié)果如表2所示,其中φ表示空集。

    由表2可以得到m1和m2,m3和m4兩個證據(jù)的不一致因子,分別用k1,k2表示。則kl,k2為:k1=0.236+0.125=0.361:k2=0.325+0.082=0.407計(jì)算得到兩個基本信度m1和m2融合后的基本信度分配(用m12表示),m3和m4融合后的基本信度分配(用m34表示)為:

   

    最后再對得到兩個基本信度m12和m34融合,基本信度分配(用m1234表示),見表3。

    則有:k=0.072+0.075=0.147
    m1234(C)=0.847/(1-k)≈0.99

    由結(jié)果可知,通過融合后糧情變化的基本信度為0.99,故可以明顯地判斷出該區(qū)域的糧情變化很大,發(fā)生霉變、蟲害的可能性較高。

4 結(jié)論

    本文通過對小麥倉儲過程中的傳感器信息選取合適的特征和計(jì)算所對應(yīng)的特征統(tǒng)計(jì)量,應(yīng)用少量的傳感器,借助虛擬多傳感器的技術(shù)以及D-S證據(jù)理論融合算法,能夠在糧情監(jiān)測中完成目標(biāo)識別,并對小麥倉儲過程中所發(fā)生的不良變化,及時發(fā)出預(yù)警信息,以確保小麥儲藏安全。

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。