《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信與網(wǎng)絡(luò) > 設(shè)計應(yīng)用 > 機(jī)動目標(biāo)跟蹤時滯問題分析
機(jī)動目標(biāo)跟蹤時滯問題分析
電子技術(shù)應(yīng)用
李暐琪1,柳超2,曹政2,張彥敏3,4,薛偉1
1.哈爾濱工程大學(xué) 煙臺研究院;2.海軍航空大學(xué); 3.海洋電磁探測與控制湖北省重點實驗室; 4.武漢第二船舶設(shè)計研究所
摘要: 機(jī)動目標(biāo)跟蹤結(jié)果在時間軸上的滯后問題是當(dāng)前機(jī)動目標(biāo)跟蹤領(lǐng)域的一大難點。產(chǎn)生時滯的情況很多,一般在跟蹤初期和發(fā)生較大機(jī)動的時間段內(nèi)尤為明顯,常常會因此出現(xiàn)誤差高峰。如果能有方法抑制或者消除時滯現(xiàn)象,將能顯著提高跟蹤效果。從仿真實驗的結(jié)果和現(xiàn)象入手,結(jié)合卡爾曼濾波理論、交互式多模型算法和現(xiàn)代神經(jīng)網(wǎng)絡(luò)模型對時滯問題進(jìn)行剖析,根據(jù)跟蹤各個階段情況的變化,分析時滯產(chǎn)生的不同原因,并提出可能的解決方法,以期為提高機(jī)動目標(biāo)跟蹤效果提供參考。
中圖分類號:TP391.41 文獻(xiàn)標(biāo)志碼:A DOI: 10.16157/j.issn.0258-7998.245319
中文引用格式: 李暐琪,柳超,曹政,等. 機(jī)動目標(biāo)跟蹤時滯問題分析[J]. 電子技術(shù)應(yīng)用,2024,50(7):1-6.
英文引用格式: Li Weiqi,Liu Chao,Cao Zheng,et al. Analysis of the time delay problem of maneuvering target tracking[J]. Application of Electronic Technique,2024,50(7):1-6.
Analysis of the time delay problem of maneuvering target tracking
Li Weiqi1,Liu Chao2,Cao Zheng2,Zhang Yanmin3,4,Xue Wei1
1.Yantai Research Institute, Harbin Engineering University; 2.Naval Aviation University; 3.Hubei Key Laboratory of Marine Electromagnetic Detection and Control; 4.Wuhan Second Ship Design and Research Institute
Abstract: The lag of maneuvering target tracking results on the time axis is a major difficulty in the field of maneuvering target tracking. There are many cases of time delay, which are especially obvious in the early stage of tracking and the time period when a large maneuver occurs, and there is often a peak of error because of this, if there is a way to suppress or eliminate the time delay phenomenon, the tracking effect will be significantly improved. Starting from the results and phenomena of simulation experiments, combined with Kalman filter theory, interactive multi-model algorithm and modern neural network model, this paper will deeply analyze the time delay problem, and obtain different causes of time delay according to the changes of each stage of tracking and give corresponding solutions, so as to provide reference for improving the tracking effect of maneuvering targets in the future.
Key words : maneuvering target tracking;time lag;Kalman filter;interactive multi-model;neural networks

引言

隨著雷達(dá)信號處理技術(shù)的飛速發(fā)展,機(jī)動目標(biāo)跟蹤技術(shù)也有了顯著進(jìn)步,并且在軍事和民用方面都得到了廣泛應(yīng)用。雖然近年來機(jī)動目標(biāo)跟蹤的精度不斷提高,但是為了應(yīng)對跟蹤環(huán)境的日益復(fù)雜化和目標(biāo)機(jī)動性能的快速提高,如何構(gòu)建更加高效的運動模型以及優(yōu)化目標(biāo)跟蹤算法仍然是學(xué)者們持續(xù)努力的方向。在此方面,文獻(xiàn)[1]總結(jié)了大量機(jī)動目標(biāo)運動模型,并且討論了各個模型的優(yōu)缺點和相互之間的關(guān)系。文獻(xiàn)[2]提出了一種基于當(dāng)前統(tǒng)計模型的機(jī)動目標(biāo)自適應(yīng)跟蹤算法,能夠根據(jù)目標(biāo)加速度的變化自適應(yīng)地改變過程噪聲,相比傳統(tǒng)機(jī)動目標(biāo)跟蹤算法,跟蹤精度明顯提高。文獻(xiàn)[3]提出了一種基于粒子濾波的具有反饋學(xué)習(xí)項的交互式多模型粒子濾波(Interactive Multi-Model Particle Filter, IMMPF)算法,濾波效果優(yōu)于原IMMPF算法。文獻(xiàn)[4]提出了一種基于長短期記憶神經(jīng)網(wǎng)絡(luò)(Long Short-Term Memory, LSTM)的自適應(yīng)跟蹤算法,將現(xiàn)代神經(jīng)網(wǎng)絡(luò)模型與傳統(tǒng)濾波算法相結(jié)合,能有效識別目標(biāo)的運動狀態(tài),具有較強(qiáng)的自適應(yīng)能力。


本文詳細(xì)內(nèi)容請下載:

http://ihrv.cn/resource/share/2000006062


作者信息:

李暐琪1,柳超2,曹政2,張彥敏3,4,薛偉1

(1.哈爾濱工程大學(xué) 煙臺研究院, 山東 煙臺 264001;

2.海軍航空大學(xué), 山東 煙臺 264001;

3.海洋電磁探測與控制湖北省重點實驗室, 湖北 武漢 430071;

4.武漢第二船舶設(shè)計研究所, 湖北 武漢 430064)


Magazine.Subscription.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。