《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 測(cè)試測(cè)量 > 設(shè)計(jì)應(yīng)用 > 面向多維數(shù)據(jù)的異常點(diǎn)檢測(cè)模型設(shè)計(jì)*
面向多維數(shù)據(jù)的異常點(diǎn)檢測(cè)模型設(shè)計(jì)*
網(wǎng)絡(luò)安全與數(shù)據(jù)治理 7期
馬勇,楊敏,朱琳
(1.內(nèi)蒙古科技大學(xué)包頭醫(yī)學(xué)院網(wǎng)絡(luò)信息中心,內(nèi)蒙古包頭014040; 2.內(nèi)蒙古科技大學(xué)包頭醫(yī)學(xué)院教務(wù)處,內(nèi)蒙古包頭014040)
摘要: 為了在大數(shù)據(jù)環(huán)境下快速、精準(zhǔn)地挖掘異常點(diǎn),保障網(wǎng)絡(luò)安全,提出了一種面向多維數(shù)據(jù)的異常點(diǎn)檢測(cè)模型設(shè)計(jì)方案。該方案利用長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)存儲(chǔ)任意時(shí)間段的多維數(shù)據(jù),并使用圖卷積網(wǎng)絡(luò)提取完整數(shù)據(jù)結(jié)構(gòu),同時(shí)加入懲罰參數(shù)和均方誤差來(lái)縮小異常點(diǎn)出現(xiàn)范圍。此外,還利用編碼器和解碼器構(gòu)建變分自編碼器函數(shù)模型,使其能夠解讀正常數(shù)據(jù)子特征,并通過(guò)編碼重建損失函數(shù)來(lái)計(jì)算數(shù)據(jù)異常度量,從而實(shí)現(xiàn)異常點(diǎn)檢測(cè)。經(jīng)過(guò)實(shí)驗(yàn)驗(yàn)證,該方法表現(xiàn)出較高的檢測(cè)正確率和運(yùn)行效率,具有極高的應(yīng)用價(jià)值。
中圖分類號(hào):TP995
文獻(xiàn)標(biāo)識(shí)碼:A
DOI:10.19358/j.issn.2097-1788.2023.07.014
引用格式:馬勇,楊敏,朱琳.面向多維數(shù)據(jù)的異常點(diǎn)檢測(cè)模型設(shè)計(jì)[J].網(wǎng)絡(luò)安全與數(shù)據(jù)治理,2023,42(7):85-90.
Design of outlier detection model for multidimensional data
Ma Yong,Yang Min,Zhu Lin
1Network Information Center Inner Mongolia University of Science and Technology Baotou Medical College, Baotou 014040, China; 2Dean′s Office Inner Mongolia University of Science and Technology Baotou Medical College, Baotou 014040,China)
Abstract: In order to quickly and accurately mine outliers in the big data environment and ensure network security, we propose a design scheme for multidimensional data oriented outlier detection model. In this scheme, the long short memory network (LSTM) is used to store multidimensional data in any period of time, and the graph convolution network is used to extract the complete data structure. At the same time, penalty parameters and mean square error are added to narrow the range of outliers. In addition, we also use the encoder and decoder to build a variational self encoder function model, so that it can interpret the normal data sub features, and calculate the data anomaly measurement through the coding reconstruction loss function, so as to achieve outlier detection. After experimental verification, this method exhibits high detection accuracy and operational efficiency, and has high application value.
Key words : coding loss function; variational self encoder; abnormal point detection; long and short term memory network; multidimensional data

0    引言

針對(duì)目前異常數(shù)據(jù)檢測(cè)方法占用空間內(nèi)存大,且異常點(diǎn)漏檢率與誤檢率高問(wèn)題[1],建立一種面向多維數(shù)據(jù)異常點(diǎn)挖掘方法是很有必要的,建立的方法必須要保證在實(shí)際數(shù)據(jù)異常點(diǎn)檢測(cè)過(guò)程中,既能夠快速響應(yīng),又能縮小異常檢測(cè)范圍、降低異常檢測(cè)錯(cuò)誤率,這是一個(gè)很具有挑戰(zhàn)性的問(wèn)題。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000005426




作者信息:

馬勇,楊敏,朱琳

(1.內(nèi)蒙古科技大學(xué)包頭醫(yī)學(xué)院網(wǎng)絡(luò)信息中心,內(nèi)蒙古包頭014040;2.內(nèi)蒙古科技大學(xué)包頭醫(yī)學(xué)院教務(wù)處,內(nèi)蒙古包頭014040)

微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。