文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2022.06.002
引用格式: 王晨,張迪明,韓斌. 基于變分自編碼器和三支決策的工控入侵檢測(cè)算法[J].信息技術(shù)與網(wǎng)絡(luò)安全,2022,41(6):10-17.
0 引言
工業(yè)控制網(wǎng)絡(luò)其核心是將互聯(lián)網(wǎng)技術(shù)同自動(dòng)化控制技術(shù)相結(jié)合。隨著工業(yè)化的推進(jìn),雖然越來越多的網(wǎng)絡(luò)模塊和控制器優(yōu)化了工控系統(tǒng)并提升了生產(chǎn)效率,但是高度復(fù)雜的工控系統(tǒng)同樣增加了其暴露高危漏洞的風(fēng)險(xiǎn)[1]。如今,工控安全是網(wǎng)絡(luò)安全領(lǐng)域亟待解決的熱點(diǎn)問題。
在工控安全的研究領(lǐng)域中,學(xué)者們針對(duì)不同的工業(yè)生產(chǎn)環(huán)境,設(shè)計(jì)出了不同的入侵檢測(cè)算法模型。趙智陽等人[2]提出了一種基于卷積神經(jīng)網(wǎng)絡(luò)的電網(wǎng)工控系統(tǒng)入侵檢測(cè)算法,在神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)中加入級(jí)聯(lián)卷積層提升了特征提取能力。莊衛(wèi)金等人[3]提出了基于特征提取的電力工控系統(tǒng)入侵檢測(cè)方法,通過堆疊稀疏編碼器并在訓(xùn)練過程中引入遷移學(xué)習(xí)進(jìn)行參數(shù)優(yōu)化,提升了對(duì)數(shù)據(jù)關(guān)鍵特征提取的能力。Shang等人[4]通過一類支持向量機(jī)(One-Class Support Vector Machine,OCSVM)概念建立正常的通信行為模型,并設(shè)計(jì)粒子群優(yōu)化算法對(duì)OCSVM模型參數(shù)進(jìn)行優(yōu)化,設(shè)計(jì)了工控系統(tǒng)中基于OCSVM的入侵檢測(cè)算法。Liu等人[5]使用兩級(jí)檢測(cè)結(jié)構(gòu),結(jié)合CNN特征提取來構(gòu)建入侵檢測(cè)的正常狀態(tài)過程轉(zhuǎn)移模型,提出了一種基于CNN和過程狀態(tài)轉(zhuǎn)換的工業(yè)控制系統(tǒng)入侵檢測(cè)算法。Brugman等人[6]通過使用軟件定義網(wǎng)絡(luò)將流量路由到云,以使用網(wǎng)絡(luò)功能虛擬化進(jìn)行檢查,提出了一種使用軟件定義網(wǎng)絡(luò)的基于云的工控入侵檢測(cè)方法。根據(jù)上述研究成果可以得到,大多數(shù)算法模型關(guān)注到了特征提取對(duì)于工控入侵檢測(cè)的重要意義,并通過相應(yīng)的特征提取方法進(jìn)行了實(shí)驗(yàn),取得了相應(yīng)的成果。但依然存在一定的局限性:
(1)對(duì)于特征提取部分仍然有提升的空間,例如對(duì)于級(jí)聯(lián)卷積層的加入難以避免運(yùn)算成本大和過擬合風(fēng)險(xiǎn);對(duì)于堆疊稀疏編碼器的應(yīng)用,編碼器只是單一地表征不同數(shù)據(jù)在隱空間的特質(zhì)而忽視了其概率分布。
(2)多數(shù)算法模型的核心設(shè)計(jì)在于如何更好地進(jìn)行特征提取,而忽視提取特征后的樣本分類步驟,大多采用傳統(tǒng)的二支決策分類器進(jìn)行分類,存在盲目決策的風(fēng)險(xiǎn)。
針對(duì)上述問題,本文提出了一種基于變分自編碼器(Variational Autoencoder,VAE)和三支決策(Three-way Decisions,TWD)的工業(yè)控制網(wǎng)絡(luò)入侵檢測(cè)算法(VAE-TWD)。該算法利用深度學(xué)習(xí)中的變分自編碼器理論[7],先針對(duì)輸入數(shù)據(jù)的密集表征進(jìn)行學(xué)習(xí)和編碼,通過屬性映射,在降低輸入數(shù)據(jù)的同時(shí)進(jìn)行特征提取。在訓(xùn)練過程中,成本函數(shù)迫使編碼在隱空間內(nèi)移動(dòng)。然后在由均值和標(biāo)準(zhǔn)差生成的高斯分布中隨機(jī)采樣,并使用解碼器解碼成重構(gòu)數(shù)據(jù)。訓(xùn)練完成后,編碼器生成的數(shù)據(jù)即是降維后的特征。最后基于三支決策理論[8]對(duì)決策域中由于暫時(shí)信息不足而無法決策的數(shù)據(jù)進(jìn)行延時(shí)決策,當(dāng)獲得更多粒度特征后再進(jìn)行決策。三支決策理論極大程度上彌補(bǔ)了傳統(tǒng)的二支決策中容錯(cuò)能力差,且不能依靠特征粒度的信息來對(duì)網(wǎng)絡(luò)數(shù)據(jù)行為做出動(dòng)態(tài)決策的缺點(diǎn)。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000004528
作者信息:
王 晨,張迪明,韓 斌
(江蘇科技大學(xué) 計(jì)算機(jī)學(xué)院,江蘇 鎮(zhèn)江212100)