《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信与网络 > 设计应用 > 基于强化学习的自适应编码调制策略
基于强化学习的自适应编码调制策略
2023年电子技术应用第5期
马颖1,王珂1,吴戈男2,邢哲2
(1.北京邮电大学 信息与通信工程学院,北京100876;2.中国空间技术研究院卫星应用总体部,北京100094)
摘要: NTN(Non-Terrestrial Network)是面向卫星通信和低空通信的重要应用场景,标志着5G技术应用从陆地通信走向了空间通信,可以预见卫星网络将是未来6G通信网络中重要组成。为了满足卫星通信质量要求、最大程度地增大系统容量,需要应用自适应编码调制技术根据信道状态信息在不断变化的通信环境下动态调整调制阶数和编码码率。人工智能在解决卫星高动态场景下信道条件快速变化所产生的问题具有明显的潜力。采用基于强化学习的低轨卫星自适应编码调制策略,解决了卫星通信环境的变化造成的门限表与实际信道不匹配的问题,与传统ARIMA (Autoregressive Integrated Moving Average)算法相比提升达到20%以上。
中圖分類號(hào):TN929.5
文獻(xiàn)標(biāo)志碼:A
DOI: 10.16157/j.issn.0258-7998.233992
中文引用格式: 馬穎,王珂,吳戈男,等. 基于強(qiáng)化學(xué)習(xí)的自適應(yīng)編碼調(diào)制策略[J]. 電子技術(shù)應(yīng)用,2023,49(5):35-40.
英文引用格式: Ma Ying,Wang Ke,Wu Genan,et al. Adaptive coding modulation strategy based on reinforcement learning[J]. Application of Electronic Technique,2023,49(5):35-40.
Adaptive coding modulation strategy based on reinforcement learning
Ma Ying1,Wang Ke1,Wu Genan2,Xing Zhe2
(1.School of Information and Communication Engineering, Beijing University of Posts and Telecommunications, Beijing 100876, China; 2.Department of Satellite Application, China Academy of Space Technology, Beijing 100094, China)
Abstract: NTN (non-terrestrial network) is an important application scenario for satellite communications and low-altitude communications, marking the transition of 5G technology applications from land communications to space communications. It is foreseeable that satellite networks will be an important component of future 6G communications networks. In order to meet the quality requirements of satellite communication and maximize the system capacity, it is necessary to apply adaptive coding and modulation technology to dynamically adjust the modulation order and coding rate according to the channel state information in the changing communication environment. AI has clear potential to solve problems arising from rapidly changing channel conditions in satellite high-dynamic scenarios. This paper adopts the low-orbit satellite adaptive coding and modulation strategy based on reinforcement learning to solve the problem of the mismatch between the threshold table and the actual channel caused by the change of the satellite communication environment, which is improved by above 20% compared with the traditional ARIMA (autoregressive integrated moving average) algorithm.
Key words : reinforcement learning;6G;adaptive coding modulation;NTN

0 引言

2001年,Goldmith等學(xué)者深入研究了平坦衰落信道場(chǎng)景下的自適應(yīng)調(diào)制,同時(shí)考慮誤碼率和系統(tǒng)頻譜效率,有效提升了系統(tǒng)的性能,隨著自適應(yīng)技術(shù)的發(fā)展,將自適應(yīng)調(diào)制編碼應(yīng)用在衛(wèi)星通信上的研究越來越深厚。2004年,DVB-S2標(biāo)準(zhǔn)中加入了自適應(yīng)編碼調(diào)制技術(shù),與DVB-S標(biāo)準(zhǔn)相比,傳輸信道容量至少提高了30%,在同樣的頻譜效率限制下接收到的信號(hào)質(zhì)量更高。2012年,Vassaki等學(xué)者利用陸地移動(dòng)衛(wèi)星通信的陰影萊斯模型和自適應(yīng)調(diào)制方案,導(dǎo)出了最優(yōu)功率分配和有效容量的封閉表達(dá)式,證明了在特定的服務(wù)質(zhì)量約束下,系統(tǒng)的有效容量是最大的。2019年,于秀蘭等學(xué)者考慮到在Ka波段下雨衰和地面移動(dòng)容易干擾衛(wèi)星信號(hào)的特點(diǎn),提出了低軌衛(wèi)星自適應(yīng)傳輸方案,仿真結(jié)果表明其有效地彌補(bǔ)了信號(hào)衰減,并降低了系統(tǒng)誤碼率。



本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000005320




作者信息:

馬穎1,王珂1,吳戈男2,邢哲2

(1.北京郵電大學(xué) 信息與通信工程學(xué)院,北京100876;2.中國(guó)空間技術(shù)研究院衛(wèi)星應(yīng)用總體部,北京100094)


微信圖片_20210517164139.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。

相關(guān)內(nèi)容