《電子技術應用》
您所在的位置:首頁 > MEMS|傳感技術 > 設計應用 > 基于改進暗通道先驗的車牌圖像去霧方法研究
基于改進暗通道先驗的車牌圖像去霧方法研究
2022年電子技術應用第11期
石冬陽1,張俊林1,賈 兵1,聶 玲1,楊慧敏2
1.重慶科技學院 電氣工程學院,重慶401331;2.湘潭大學 數(shù)學與計算科學學院,湖南 湘潭411105
摘要: 針對霧霾場景下車牌識別系統(tǒng)存在識別精度較差的問題,提出改進型車牌識別模型。該模型運用改進型暗通道先驗去霧算法進行去霧處理,考慮到原去霧算法處理含明亮區(qū)域霧霾圖像時會出現(xiàn)顏色失真等問題,首先對大氣光值進行閾值限制,其次對引入因子進行優(yōu)化選擇,最后引入容差機制以修正透射率,并對圖像亮度進行調(diào)整以提升圖像可視化效果。仿真結(jié)果表明,運用改進后算法得到的去霧結(jié)果在PSNR、SSIM、Entropy、e性能上相對于改進前分別平均提升1.934 dB、0.082、0.235、38.995。將去霧前后車牌圖像進行識別測試,車牌識別精度提升22%,證明了所提模型的優(yōu)越性。
中圖分類號: TP394.1
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.223211
中文引用格式: 石冬陽,張俊林,賈兵,等. 基于改進暗通道先驗的車牌圖像去霧方法研究[J].電子技術應用,2022,48(11):13-18.
英文引用格式: Shi Dongyang,Zhang Junlin,Jia Bing,et al. Research on defogging method of license plate image based on improved dark channel prior[J]. Application of Electronic Technique,2022,48(11):13-18.
Research on defogging method of license plate image based on improved dark channel prior
Shi Dongyang1,Zhang Junlin1,Jia Bing1,Nie Ling1,Yang Huimin2
1.School of Electrical Engineering,Chongqing University of Science and Technology,Chongqing 401331,China; 2.School of Mathematics and Computing Science,Xiangtan University,Xiangtan 411105,China
Abstract: Aiming at the problem of poor recognition accuracy of license plate recognition system in haze scene, an improved license plate recognition model is proposed. The model uses the improved dark channel apriori defogging algorithm for defogging. Considering the color distortion and other problems when the original defogging algorithm processes the haze image with bright areas, firstly, the atmospheric light value is limited by the threshold value. Secondly, the introduction factor is optimized. And finally, the tolerance mechanism is introduced to correct the transmittance, and the image brightness is adjusted to improve the image visualization effect. The simulation results show that the performance of PSNR, SSIM, enterprise and e improved by 1.934 dB, 0.082, 0.235 and 38.995 respectively. The recognition test of the license plate image before and after defogging shows that the recognition accuracy of the license plate is improved by 22%, which proves the superiority of the proposed model.
Key words : license plate recognition;color distortion;threshold limit;introducing factors;tolerance mechanism

0 引言

    隨著社會經(jīng)濟快速發(fā)展,車輛逐漸成為我們?nèi)粘1夭豢缮俚慕煌üぞ撸?a class="innerlink" href="http://ihrv.cn/tags/車牌識別" target="_blank">車牌識別系統(tǒng)因此被應用到道路監(jiān)控中,一定程度上提高了交通管理的效率。在無霧的場景下,車牌識別系統(tǒng)能獲得較好的識別效果[1];在霧霾天氣下,受到大氣中懸浮顆粒的影響,使得圖像可見度降低[2],車牌識別系統(tǒng)采集到的車牌圖像變得模糊不清,圖像中車牌信息特征無法及時有效呈現(xiàn)出來,導致車牌定位與識別的精度嚴重下降。

    為了直接有效地提升車牌識別精度,必須首先對車牌識別系統(tǒng)采集到的圖像進行去霧處理。在圖像去霧方法中,圖像增強和圖像復原是兩種常見的去霧方法。前者在處理具有復雜結(jié)構(gòu)的有霧圖像時效果并不理想。后者基于大氣散射模型,進而求解無霧圖像,獲得了較好的圖像去霧效果,但自身仍有局限性。Tan[3]采用最大化恢復圖像的局部對比度來消除霧霾,但結(jié)果中出現(xiàn)了圖像色調(diào)飽和的現(xiàn)象。He等人[4]提出了基于導向濾波的暗通道去霧算法,縮短了去霧時間,但在處理含有天空等明亮區(qū)域的霧霾圖像時出現(xiàn)了顏色的失真和偏移。Tarel等人[5]構(gòu)建大氣耗散函數(shù)以實現(xiàn)圖像去霧,去霧結(jié)果中出現(xiàn)了顏色失真的現(xiàn)象。Fattal等[6]通過計算場景內(nèi)反射率得到無霧圖像,但該方法不適用于模糊圖像和灰度圖像。目前暗通道先驗去霧算法取得了較好的去霧效果,但該算法處理含有天空等明亮區(qū)域圖像時存在顏色失真和偏移等問題,故本次在暗通道先驗去霧算法的基礎上進行相應的改進。




本文詳細內(nèi)容請下載:http://ihrv.cn/resource/share/2000004998。




作者信息:

石冬陽1,張俊林1,賈  兵1,聶  玲1,楊慧敏2

(1.重慶科技學院 電氣工程學院,重慶401331;2.湘潭大學 數(shù)學與計算科學學院,湖南 湘潭411105)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權禁止轉(zhuǎn)載。