《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于信道容量的協(xié)同探測(cè)資源聯(lián)合優(yōu)化方法
基于信道容量的協(xié)同探測(cè)資源聯(lián)合優(yōu)化方法
2022年電子技術(shù)應(yīng)用第9期
羅 菁1,2,梁前超1
1.海軍工程大學(xué),湖北 武漢430019;2.空軍預(yù)警學(xué)院,湖北 武漢430019
摘要: 針對(duì)空間感知中的協(xié)同探測(cè)任務(wù),利用探測(cè)信道容量作為優(yōu)化目標(biāo),對(duì)蜂群算法進(jìn)行改進(jìn)并實(shí)現(xiàn)對(duì)集群軌跡與動(dòng)力的聯(lián)合優(yōu)化。首先構(gòu)建了多發(fā)多收協(xié)同探測(cè)模型,基于信息論的視角,推導(dǎo)出探測(cè)模型的信道容量,將其作為優(yōu)化無(wú)人集群動(dòng)力與輻射功率的目標(biāo)函數(shù),然后逐個(gè)分析并梳理出影響與制約目標(biāo)函數(shù)的因素,從而明晰了優(yōu)化目標(biāo)與約束條件。接著針對(duì)蜂群算法的不足,改進(jìn)其搜索策略與參數(shù)優(yōu)化方法。進(jìn)而構(gòu)建了基于改機(jī)蜂群算法的協(xié)同探測(cè)動(dòng)力優(yōu)化流程。最后通過(guò)仿真驗(yàn)證與算法對(duì)比,表明本文算法能夠提升無(wú)人機(jī)集群協(xié)同探測(cè)的感知能力。
中圖分類號(hào): TN97
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.222996
中文引用格式: 羅菁,梁前超. 基于信道容量的協(xié)同探測(cè)資源聯(lián)合優(yōu)化方法[J].電子技術(shù)應(yīng)用,2022,48(9):13-21.
英文引用格式: Luo Jing,Liang Qianchao. A joint optimization method for cooperative detection resources based on channel capacity[J]. Application of Electronic Technique,2022,48(9):13-21.
A joint optimization method for cooperative detection resources based on channel capacity
Luo Jing1,2,Liang Qianchao1
1.Naval University of Engineering,Wuhan 430033,China;2.Air Force Early Warning Academy,Wuhan 430019,China
Abstract: Aiming at the cooperative detection task in spatial perception, using the detection channel capacity as the optimization target, the bee colony algorithm is improved and the joint optimization of the swarm trajectory and power is realized. Firstly, a multi-transmit and multi-receive cooperative detection model is constructed. Based on the perspective of information theory, the channel capacity of the detection model is deduced and used as the objective function for optimizing the power and radiation power of unmanned clusters. The factors that affect and constrain the objective function are analyzed and sort out one by one, so as to clarify the optimization objectives and constraints. Then, aiming at the shortcomings of the bee colony algorithm, its search strategy and parameter optimization method are improved. Furthermore, a dynamic optimization process of collaborative detection based on the modified bee colony algorithm is constructed. Finally, through simulation verification and algorithm comparison, it shows that the algorithm in this paper can improve the perception ability of UAV swarm cooperative detection.
Key words : UAV swarm;cooperative detection;channel capacity;joint optimization;artificial bee colony algorithm

0 引言

    “知己知彼,百戰(zhàn)不殆”,這是所有從事軍事研究人員的共識(shí),在未來(lái)戰(zhàn)場(chǎng)中,體現(xiàn)為實(shí)現(xiàn)戰(zhàn)場(chǎng)的單向透明性,即我方能夠掌握敵方動(dòng)態(tài),而敵方難以了解我方狀態(tài),從而實(shí)現(xiàn)先敵發(fā)現(xiàn)、先敵決策、先敵行動(dòng),掌握戰(zhàn)場(chǎng)的主動(dòng)權(quán)[1-3]。這就要求我方具有明顯優(yōu)于敵方的態(tài)勢(shì)感知能力,這種感知不僅局限于時(shí)刻的空間位置感知,還要求實(shí)現(xiàn)包括電磁維度與能量維度的跨域感知,與對(duì)敵方全域的預(yù)測(cè),從而識(shí)別與預(yù)判對(duì)手的意圖,便于決策與行動(dòng)。隨著無(wú)人技術(shù)與信息技術(shù)的迅猛發(fā)展,無(wú)人平臺(tái)能力逐步提升,甚至在某些軍事領(lǐng)域已經(jīng)出現(xiàn)了超越人的狀態(tài)與趨勢(shì)[4-6]。尤其是無(wú)人機(jī)集群[7-10]因其數(shù)量效應(yīng)與規(guī)模效應(yīng),已經(jīng)涌現(xiàn)出單體平臺(tái)不具備的功能,已然成為未來(lái)戰(zhàn)場(chǎng)的主要作戰(zhàn)平臺(tái)與對(duì)抗樣式。

    無(wú)人機(jī)集群具有良好的群體分布式優(yōu)勢(shì),能夠靈活地調(diào)整自身空間位置,以實(shí)現(xiàn)分布式的方式提升對(duì)戰(zhàn)場(chǎng)態(tài)勢(shì)的感知能力,而如何優(yōu)化調(diào)整無(wú)人機(jī)集群的探測(cè)資源,已然成為制約無(wú)人機(jī)集群協(xié)同探測(cè)性能的瓶頸。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000004914




作者信息:

羅  菁1,2,梁前超1

(1.海軍工程大學(xué),湖北 武漢430019;2.空軍預(yù)警學(xué)院,湖北 武漢430019)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。