《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 通信与网络 > 设计应用 > 基于自校验孪生神经网络的故障区段定位方法
基于自校验孪生神经网络的故障区段定位方法
2022年电子技术应用第7期
王 毅1,李 曙1,李松浓2,陈 涛2,侯兴哲2,付秀元3
1.重庆邮电大学 通信与信息工程学院,重庆400065;2.国网重庆市电力公司电力科学研究院,重庆400014; 3.国家电投集团数字科技有限公司,北京100080
摘要: 针对中压配电网区段定位方法所存在的由系统中性点接地方式、故障点距离和过渡电阻大小等环境因素,以及电流互感器极性未知或智能电表错误安装等人为因素所导致的定位不准确问题,提出一种平稳小波极性校验下基于孪生神经网络的故障区段定位方法。首先,分析了零序电流暂态特征,指出了传统线性相关法存在的定位缺陷;其次,使用平稳小波变换解决信号同步和设备反接的问题;最后引入孪生神经网络对故障点上下游信号进行相似性匹配,经训练该模型可以准确定位故障区段。通过仿真验证,该方法具有较强的抗干扰能力,对于定位盲区也有较高的识别率。
中圖分類號: TM773
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.212354
中文引用格式: 王毅,李曙,李松濃,等. 基于自校驗(yàn)孿生神經(jīng)網(wǎng)絡(luò)的故障區(qū)段定位方法[J].電子技術(shù)應(yīng)用,2022,48(7):60-66,73.
英文引用格式: Wang Yi,Li Shu,Li Songnong,et al. Fault segment location method based on self-checking siamese convolutional neural network[J]. Application of Electronic Technique,2022,48(7):60-66,73.
Fault segment location method based on self-checking siamese convolutional neural network
Wang Yi1,Li Shu1,Li Songnong2,Chen Tao2,Hou Xingzhe2,Fu Xiuyuan3
1.Communication and Information Engineering College,Chongqing University of Posts and Telecommunications, Chongqing 400065,China; 2.Chongqing Electric Power Research Institute,Chongqing 400014,China; 3.State Power Investment Group Digital Technology Co.,Ltd.,Beijing 100080,China
Abstract: For medium voltage distribution network segment positioning method, aiming at the inaccurate positioning problem caused by environmental factors such as the system neutral point grounding way, the size of the distance and the transition resistance, as well as human factors such as current transformer polarity unknown or incorrect erection smart meters and so on, this paper puts forward a kind of stationary wavelet polarity check the fault section locating method based on siamese convolutional neural network(S-CNN). Firstly, the transient characteristics of zero-sequence current are analyzed, and the localization defects of traditional linear correlation method are pointed out. Secondly, the stationary wavelet transform(SWT) is used to solve the problems of signal synchronization and equipment reverse connection. Finally, S-CNN is introduced to perform similarity matching for upstream and downstream signals of the fault point, and the model can be trained to locate the fault segment accurately. The simulation results show that this method has strong anti-interference ability and high recognition rate for blind area.
Key words : ground fault;fault location;similarity analysis;stationary wavelet transform;siamese convolutional neural network

0 引言

    我國中壓配電網(wǎng)主要采用中性點(diǎn)非有效接地方式。單相接地故障作為小電流接地系統(tǒng)中發(fā)生頻率最高的故障,一旦發(fā)生,由于其電氣物理特征并不明顯,并且故障電弧的燃弧不穩(wěn)定;與此同時(shí),配電網(wǎng)的運(yùn)行方式靈活多變,不同線路結(jié)構(gòu)差異較大,使得故障情況較為復(fù)雜,為小電流接地系統(tǒng)的故障檢測帶來了極大困難。

    單相接地故障檢測主要由故障識別、選線、定位和測距四部分構(gòu)成。其中快速準(zhǔn)確地實(shí)現(xiàn)故障定位能保證故障能及時(shí)處理,提高電力系統(tǒng)的供電可靠性。經(jīng)過近幾年國內(nèi)外的研究,故障選線技術(shù)已經(jīng)日益成熟,并且已經(jīng)在實(shí)際應(yīng)用中取得了不少成果,為后續(xù)確定故障區(qū)段或故障點(diǎn)距離打下了良好基礎(chǔ)。而故障定位中諸如信號注入法[1]、中值電阻法、阻抗法[2]、行波法[3-4]等技術(shù)受配電網(wǎng)分支多、結(jié)構(gòu)復(fù)雜、現(xiàn)實(shí)路徑阻抗和系統(tǒng)運(yùn)行方式等原因影響較大,并且運(yùn)行與維護(hù)成本較高,對某一故障點(diǎn)進(jìn)行距離演算的技術(shù)其實(shí)用性都有待考量。

    故障區(qū)段定位可以進(jìn)一步縮小故障查找范圍,是實(shí)現(xiàn)故障測距與精確定位的前提,這類方法依附于目前先進(jìn)的通信技術(shù),各饋線終端先實(shí)現(xiàn)故障信息上傳,主站再結(jié)合配電網(wǎng)結(jié)構(gòu)與特征信息構(gòu)建故障判別矩陣,并通過檢測算法確定最終區(qū)段[5],有良好的工程實(shí)用價(jià)值。




本文詳細(xì)內(nèi)容請下載:http://ihrv.cn/resource/share/2000004588。




作者信息:

王  毅1,李  曙1,李松濃2,陳  濤2,侯興哲2,付秀元3

(1.重慶郵電大學(xué) 通信與信息工程學(xué)院,重慶400065;2.國網(wǎng)重慶市電力公司電力科學(xué)研究院,重慶400014;

3.國家電投集團(tuán)數(shù)字科技有限公司,北京100080)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。