《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 其他 > 設(shè)計(jì)應(yīng)用 > 基于混合聚類(lèi)與融合用戶興趣的協(xié)同過(guò)濾推薦算法
基于混合聚類(lèi)與融合用戶興趣的協(xié)同過(guò)濾推薦算法
2022年電子技術(shù)應(yīng)用第4期
麻 天1,2,余本國(guó)3,張 靜1,2,宋文愛(ài)1,2,景 昱1
1.中北大學(xué) 軟件學(xué)院,山西 太原030051;2.山西省軍民融合軟件工程技術(shù)研究中心,山西 太原030051; 3.海南醫(yī)學(xué)院 生物醫(yī)學(xué)信息與工程學(xué)院,海南 ???71199
摘要: 推薦效率低、推薦質(zhì)量有待提高等問(wèn)題普遍存在于傳統(tǒng)協(xié)同過(guò)濾推薦算法中,為了改善并解決這些問(wèn)題,在協(xié)同過(guò)濾推薦算法中將混合聚類(lèi)與用戶興趣偏好融合,經(jīng)過(guò)驗(yàn)證推薦質(zhì)量有顯著提升。首先根據(jù)用戶的個(gè)人相關(guān)信息構(gòu)建Canopy+bi-Kmeans的一種多重混合聚類(lèi)模型,采用提出的混合聚類(lèi)模型把所有用戶劃分成多個(gè)聚類(lèi)簇,將每個(gè)用戶的興趣偏好融合到生成的聚類(lèi)簇中,形成新的相似度計(jì)算模型;其次利用基于TF-IDF算法的權(quán)重歸類(lèi)方法計(jì)算用戶對(duì)標(biāo)簽的權(quán)重,并使融入時(shí)間系數(shù)的指數(shù)衰減函數(shù)捕捉用戶興趣偏好隨時(shí)間的變化;最后使用加權(quán)融合將用戶偏好和混合聚類(lèi)模型相結(jié)合,匹配到更相似的鄰居用戶,計(jì)算出項(xiàng)目評(píng)分并進(jìn)行推薦。利用公開(kāi)數(shù)據(jù)集對(duì)比實(shí)驗(yàn)證明,提出的方法能夠提高推薦質(zhì)量和推薦可靠性。
中圖分類(lèi)號(hào): TP399
文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.212086
中文引用格式: 麻天,余本國(guó),張靜,等. 基于混合聚類(lèi)與融合用戶興趣的協(xié)同過(guò)濾推薦算法[J].電子技術(shù)應(yīng)用,2022,48(4):29-33.
英文引用格式: Ma Tian,Yu Benguo,Zhang Jing,et al. Collaborative filtering recommendation algorithm based on hybrid clustering and user preferences fusion[J]. Application of Electronic Technique,2022,48(4):29-33.
Collaborative filtering recommendation algorithm based on hybrid clustering and user preferences fusion
Ma Tian1,2,Yu Benguo3,Zhang Jing1,2,Song Wenai1,2,Jing Yu1
1.Software School,North University of China,Taiyuan 030051,China; 2.Shanxi Military and Civilian Integration Software Engineering Technology Research Center,Taiyuan 030051,China; 3.School of Biomedical Information and Engineering,Hainan Medical University,Haikou 571199,China
Abstract: Problems such as low recommendation efficiency and recommendation quality to be improved generally exist in the traditional collaborative filtering recommendation algorithm. In order to improve and solve these problems, the collaborative filtering recommendation algorithm integrates mixed clustering with user interests and preferences, and the recommendation quality has been significantly improved after verification. Firstly, a multiple mixed clustering model of Canopy+ Bi-Kmeans was constructed according to the personal information of users. The proposed mixed clustering model was used to divide all users into multiple clusters, and the interest preferences of each user were fused into the generated clusters to form a new similarity calculation model. Secondly, the weight classification method based on TF-IDF algorithm is used to calculate the weight of users on labels, and the exponential decay function incorporating time coefficient is used to capture the change of users′ interest preference with time. Finally, weighted fusion is used to combine user preferences with mixed clustering model to match more similar neighbor users, calculate project scores and make recommendations. The experimental results show that the proposed method can improve the recommendation quality and reliability.
Key words : recommendation algorithm;weight label;time attenuation coefficient;exponential decay function;hybrid clustering

0 引言

    在信息快速發(fā)展的現(xiàn)代社會(huì)中,推薦算法已經(jīng)普遍出現(xiàn)在人們的生活中,給人類(lèi)生活無(wú)形中帶來(lái)巨大便利[1],如短視頻推薦[2]、音樂(lè)歌曲推薦[3]、新聞信息推薦[4]。協(xié)同過(guò)濾推薦算法在工程上更容易實(shí)現(xiàn)。該算法分為兩類(lèi):基于用戶的協(xié)同過(guò)濾推薦算法(user-based collaborative filtering)和基于項(xiàng)目的協(xié)同過(guò)濾推薦算法(item-based collaborative filtering)[5]。簡(jiǎn)言之:物以類(lèi)聚,人以群分。雖然協(xié)同過(guò)濾推薦算法與其他推薦算法相比有很多優(yōu)點(diǎn),但解決推薦效率低、推薦質(zhì)量低、冷啟動(dòng)和稀疏矩陣等問(wèn)題一直是研究者不斷努力改進(jìn)的方向[6]。其中在計(jì)算不同用戶之間的相似性時(shí)也存在很多問(wèn)題,相似度計(jì)算不精準(zhǔn)是影響推薦準(zhǔn)確性的一個(gè)關(guān)鍵因素[1]

    很多研究學(xué)者提出很多方法改進(jìn)以上存在的問(wèn)題。趙偉等在傳統(tǒng)K-means聚類(lèi)算法的基礎(chǔ)上做了改進(jìn),有效地解決了有關(guān)用戶聚類(lèi)的一些問(wèn)題[7]。王蓉等提出了一種混合聚類(lèi)與融合屬性特征的協(xié)同過(guò)濾推薦算法,在一定程度上能提高推薦效率,解決冷啟動(dòng)問(wèn)題,為聚類(lèi)算法在推薦系統(tǒng)中的研究開(kāi)辟了新思路[6]。

    本文依據(jù)上述學(xué)者的思路,改進(jìn)了算法,通過(guò)建立Canopy+bi-Kmeans混合聚類(lèi)模型[8]和一種改進(jìn)的相似度計(jì)算方法,提出一種基于混合聚類(lèi)與融合用戶偏好的協(xié)同過(guò)濾推薦算法,從而可以達(dá)到提高推薦可靠性、提高推薦精度的效果。利用 MovieLens數(shù)據(jù)集進(jìn)行試驗(yàn)得出結(jié)果表明,該算法不僅能有效解決存在的冷啟動(dòng)問(wèn)題,而且可提高推薦算法效率。




本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000004048




作者信息:

麻  天1,2,余本國(guó)3,張  靜1,2,宋文愛(ài)1,2,景  昱1

(1.中北大學(xué) 軟件學(xué)院,山西 太原030051;2.山西省軍民融合軟件工程技術(shù)研究中心,山西 太原030051;

3.海南醫(yī)學(xué)院 生物醫(yī)學(xué)信息與工程學(xué)院,海南 ???71199)




wd.jpg

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。