基于混合聚類與融合用戶興趣的協(xié)同過濾推薦算法
2022年電子技術(shù)應(yīng)用第4期
麻 天1,2,余本國3,張 靜1,2,宋文愛1,2,景 昱1
1.中北大學(xué) 軟件學(xué)院,山西 太原030051;2.山西省軍民融合軟件工程技術(shù)研究中心,山西 太原030051; 3.海南醫(yī)學(xué)院 生物醫(yī)學(xué)信息與工程學(xué)院,海南 ???71199
摘要: 推薦效率低、推薦質(zhì)量有待提高等問題普遍存在于傳統(tǒng)協(xié)同過濾推薦算法中,為了改善并解決這些問題,在協(xié)同過濾推薦算法中將混合聚類與用戶興趣偏好融合,經(jīng)過驗證推薦質(zhì)量有顯著提升。首先根據(jù)用戶的個人相關(guān)信息構(gòu)建Canopy+bi-Kmeans的一種多重混合聚類模型,采用提出的混合聚類模型把所有用戶劃分成多個聚類簇,將每個用戶的興趣偏好融合到生成的聚類簇中,形成新的相似度計算模型;其次利用基于TF-IDF算法的權(quán)重歸類方法計算用戶對標(biāo)簽的權(quán)重,并使融入時間系數(shù)的指數(shù)衰減函數(shù)捕捉用戶興趣偏好隨時間的變化;最后使用加權(quán)融合將用戶偏好和混合聚類模型相結(jié)合,匹配到更相似的鄰居用戶,計算出項目評分并進(jìn)行推薦。利用公開數(shù)據(jù)集對比實驗證明,提出的方法能夠提高推薦質(zhì)量和推薦可靠性。
中圖分類號: TP399
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.212086
中文引用格式: 麻天,余本國,張靜,等. 基于混合聚類與融合用戶興趣的協(xié)同過濾推薦算法[J].電子技術(shù)應(yīng)用,2022,48(4):29-33.
英文引用格式: Ma Tian,Yu Benguo,Zhang Jing,et al. Collaborative filtering recommendation algorithm based on hybrid clustering and user preferences fusion[J]. Application of Electronic Technique,2022,48(4):29-33.
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.212086
中文引用格式: 麻天,余本國,張靜,等. 基于混合聚類與融合用戶興趣的協(xié)同過濾推薦算法[J].電子技術(shù)應(yīng)用,2022,48(4):29-33.
英文引用格式: Ma Tian,Yu Benguo,Zhang Jing,et al. Collaborative filtering recommendation algorithm based on hybrid clustering and user preferences fusion[J]. Application of Electronic Technique,2022,48(4):29-33.
Collaborative filtering recommendation algorithm based on hybrid clustering and user preferences fusion
Ma Tian1,2,Yu Benguo3,Zhang Jing1,2,Song Wenai1,2,Jing Yu1
1.Software School,North University of China,Taiyuan 030051,China; 2.Shanxi Military and Civilian Integration Software Engineering Technology Research Center,Taiyuan 030051,China; 3.School of Biomedical Information and Engineering,Hainan Medical University,Haikou 571199,China
Abstract: Problems such as low recommendation efficiency and recommendation quality to be improved generally exist in the traditional collaborative filtering recommendation algorithm. In order to improve and solve these problems, the collaborative filtering recommendation algorithm integrates mixed clustering with user interests and preferences, and the recommendation quality has been significantly improved after verification. Firstly, a multiple mixed clustering model of Canopy+ Bi-Kmeans was constructed according to the personal information of users. The proposed mixed clustering model was used to divide all users into multiple clusters, and the interest preferences of each user were fused into the generated clusters to form a new similarity calculation model. Secondly, the weight classification method based on TF-IDF algorithm is used to calculate the weight of users on labels, and the exponential decay function incorporating time coefficient is used to capture the change of users′ interest preference with time. Finally, weighted fusion is used to combine user preferences with mixed clustering model to match more similar neighbor users, calculate project scores and make recommendations. The experimental results show that the proposed method can improve the recommendation quality and reliability.
Key words : recommendation algorithm;weight label;time attenuation coefficient;exponential decay function;hybrid clustering
此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。