基于双向GRU模型的网络流量预测的研究
2022年电子技术应用第2期
徐海兵,郭久明
迈普通信技术股份有限公司 科技创新部,四川 成都610094
摘要: 当前使用门控循环单元(Gated Recurrent Units,GRU)神经网络进行流量预测时,普遍存在滞后性以及预测准确性不高的问题,因此提出一种改进的GRU模型进行流量预测的方法。首先基于GRU神经网络提出一种双向GRU神经网络和人工神经网络堆叠的网络模型,适用于流量特征、时间特征、事件特征等多维向量的输入;同时为解决部分时间段准确度不高的问题,将训练样本进行日期分类,针对每一类日期生成单独的网络模型,能大幅提升预测的准确度以及改善预测的滞后性。最后,为了提升流量峰值的预测准确度,采用样本的再平衡手段以及自定义损失函数,实验结果表明,能较好地达成预期目标。
中圖分類號: TN919.2;TP181
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.211517
中文引用格式: 徐海兵,郭久明. 基于雙向GRU模型的網(wǎng)絡流量預測的研究[J].電子技術(shù)應用,2022,48(2):19-22,27.
英文引用格式: Xu Haibing,Guo Jiuming. Research on network traffic prediction based on Bi-GRU model[J]. Application of Electronic Technique,2022,48(2):19-22,27.
文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.211517
中文引用格式: 徐海兵,郭久明. 基于雙向GRU模型的網(wǎng)絡流量預測的研究[J].電子技術(shù)應用,2022,48(2):19-22,27.
英文引用格式: Xu Haibing,Guo Jiuming. Research on network traffic prediction based on Bi-GRU model[J]. Application of Electronic Technique,2022,48(2):19-22,27.
Research on network traffic prediction based on Bi-GRU model
Xu Haibing,Guo Jiuming
Technological Innovation Department,Maipu Communication Technology Co.,Ltd.,Chengdu 610094,China
Abstract: At present, there are some problems such as lag and low prediction accuracy when using gated recurrent units(GRU) neural network to predict traffic. This paper proposes an improved GRU model for traffic prediction. Firstly, based on GRU neural network, a network model integrating Bi-GRU neural network and artificial neural network is proposed, which satisfies the input of multi-dimensional vectors such as traffic features, time features and event features. At the same time, in order to improve the accuracy of some time periods, the training samples are classified into date classes, and a separate network model is generated for each type of date. It can greatly improve the accuracy of prediction and improve the lag of prediction. Finally, in order to improve the prediction accuracy of peak traffic, the experimental results show that the proposed goal can be achieved by the means of sample propensity balance and user-defined loss function.
Key words : traffic prediction;neural network;gated recurrent unit;loss function
0 引言
隨著網(wǎng)絡的普及,網(wǎng)絡流量的規(guī)模不斷被刷新,高效且合理地利用網(wǎng)絡資源變得尤為重要。一方面,網(wǎng)絡資源分配的不合理可能導致部分網(wǎng)絡資源由于耗盡而無法正常使用,甚至造成網(wǎng)絡癱瘓,而其他鏈路資源可能卻處于過剩的狀態(tài),嚴重影響了用戶的上網(wǎng)體驗;另一方面,雖然在前期合理分配了網(wǎng)絡資源,但網(wǎng)絡流量具有突發(fā)性,原本充足的網(wǎng)絡資源可能出現(xiàn)短缺的情況。為了解決此問題,現(xiàn)有軟件定義網(wǎng)絡(Software Defined Network,SDN)[1]控制器會實時檢查鏈路狀況,在一定程度上緩解了網(wǎng)絡擁塞,但由于調(diào)度時已經(jīng)發(fā)生了擁塞,無法滿足更高等級、更好服務質(zhì)量的要求。鑒于此,如果能夠精準預測網(wǎng)絡流量,提前發(fā)現(xiàn)未來時刻的網(wǎng)絡流量變化情況,流量調(diào)度系統(tǒng)則可以提前進行合理調(diào)度,有效避免擁塞的發(fā)生。
本文詳細內(nèi)容請下載:http://ihrv.cn/resource/share/2000003960。
作者信息:
徐海兵,郭久明
(邁普通信技術(shù)股份有限公司 科技創(chuàng)新部,四川 成都610094)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。
