《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 其他 > 設(shè)計(jì)應(yīng)用 > 基于邊緣智能的心電信號(hào)處理方法及監(jiān)測系統(tǒng)
基于邊緣智能的心電信號(hào)處理方法及監(jiān)測系統(tǒng)
信息技術(shù)與網(wǎng)絡(luò)安全
甄鵬華,韓玉冰
(齊魯工業(yè)大學(xué)(山東省科學(xué)院) 計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,山東 濟(jì)南250353)
摘要: 邊緣智能是邊緣計(jì)算和人工智能相結(jié)合的產(chǎn)物,它的特性使其特別適合用于進(jìn)行實(shí)時(shí)心電信號(hào)分析。心電圖中體現(xiàn)的心電信號(hào)能夠反映人體的心率等生理信息,通過對(duì)心電信號(hào)的分析及狀態(tài)類型的分類可以檢測人體是否患有心率失常等疾病。然而傳統(tǒng)的心電信號(hào)分類研究是針對(duì)大量樣本進(jìn)行的單純分類研究,并不適用于實(shí)時(shí)小樣本分析的邊緣智能場景。提出了一種可行的心電信號(hào)處理方法,并設(shè)計(jì)了一個(gè)基于邊緣智能的心電監(jiān)測系統(tǒng)。實(shí)驗(yàn)結(jié)果表明,該心電信號(hào)處理方法具有一定的實(shí)用性,能夠在一定程度上滿足邊緣智能場景的要求。
中圖分類號(hào): TP391
文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2021.07.018
引用格式: 甄鵬華,韓玉冰. 基于邊緣智能的心電信號(hào)處理方法及監(jiān)測系統(tǒng)[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(7):108-115.
Electrocardio signal processing and monitoring system based on edge intelligence
Zhen Penghua,Han Yubing
(School of Computer Science and Technology,Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353,China)
Abstract: Edge Intelligence(EI) is the product of the combination of Edge Computing(EC) and Artificial Intelligence(AI). Its characteristics make it particularly suitable for real-time electrocardio signal analysis. The electrocardio signal can reflect the human body′s heart rate and other physiological information,through the analysis of the electrocardio signal and the classification of the heartbeat, it can be detected whether the human body suffers from arrhythmia and other diseases. However, the traditional electrocardio signal classification research is only for a large number of samples, so it is not suitable for the edge intelligence scene of real-time small sample analysis. This paper proposes a feasible electrocardio signal processing method and designs an electrocardio monitoring system based on edge intelligence. Experimental results show that the electrocardio signal processing method has a certain practicability and can meet the requirements of edge intelligent scenes to a certain extent.
Key words : edge intelligence;electrocardio signal;neural network;system simulation

0 引言

邊緣智能是十分新穎的研究領(lǐng)域,它集合了邊緣計(jì)算和人工智能的優(yōu)勢,能夠以較低的資源消耗和較快的運(yùn)行速度提供較為精確的分析結(jié)果[1-2]。邊緣設(shè)備及邊緣計(jì)算也是分析心電信號(hào)常用的方法。

然而傳統(tǒng)的心電信號(hào)分類研究是針對(duì)大量樣本進(jìn)行的單純分類研究,并不適用于實(shí)時(shí)小樣本分析的邊緣智能場景。這是由于傳統(tǒng)研究通常是基于大量有完善的位置標(biāo)記的樣本,在處理過程中依賴樣本數(shù)量進(jìn)行特定的處理。在邊緣智能場景中,預(yù)測過程中心電信號(hào)是實(shí)時(shí)產(chǎn)生的,且要求產(chǎn)生一條數(shù)據(jù)即分析一條數(shù)據(jù),以滿足實(shí)時(shí)性的要求,上述基于樣本數(shù)量的處理方法無法實(shí)現(xiàn)。



本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000003687




作者信息:

甄鵬華,韓玉冰

(齊魯工業(yè)大學(xué)(山東省科學(xué)院) 計(jì)算機(jī)科學(xué)與技術(shù)學(xué)院,山東 濟(jì)南250353)


此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。