《電子技術(shù)應(yīng)用》
您所在的位置:首頁(yè) > 人工智能 > 業(yè)界動(dòng)態(tài) > 做邊緣智能,要摒棄“拿著錘子找釘子”

做邊緣智能,要摒棄“拿著錘子找釘子”

2021-10-28
來(lái)源:物聯(lián)網(wǎng)智庫(kù)
關(guān)鍵詞: 邊緣智能

  試想,一輛正在急速前進(jìn)的自動(dòng)駕駛汽車(chē),前方突然遇到障礙需要緊急剎車(chē),這時(shí)它不可能把相關(guān)信息送到云端處理再反饋,否則等剎車(chē)指令下達(dá)的時(shí)候很可能已經(jīng)發(fā)生撞車(chē)事故了。

  類(lèi)似的,在軋鋼這樣的工業(yè)場(chǎng)景中,軋機(jī)需要依靠多個(gè)伺服電機(jī)協(xié)同驅(qū)動(dòng)軋制過(guò)程,電機(jī)不能出現(xiàn)絲毫的偏差,否則可能導(dǎo)致整塊鋼板報(bào)廢。為了保證軋制精度,需要以毫秒級(jí)的數(shù)據(jù)采集頻率來(lái)監(jiān)測(cè)電機(jī)的運(yùn)轉(zhuǎn)是否正常,實(shí)時(shí)數(shù)據(jù)上云顯然也是來(lái)不及的。

  除了時(shí)延,隱私安全近年來(lái)也成為個(gè)人和企業(yè)越發(fā)關(guān)注的問(wèn)題。比如,在傳統(tǒng)的人臉識(shí)別場(chǎng)景下,智能終端需要將收集到面部信息上傳到云服務(wù)器進(jìn)行處理,從而為數(shù)據(jù)泄露或被濫用埋下了隱患。而對(duì)企業(yè)來(lái)說(shuō),商業(yè)隱私甚至關(guān)乎其生死存亡,因此大多數(shù)企業(yè)都不愿意把核心數(shù)據(jù)放在云平臺(tái)廠商的服務(wù)器上。

  出于對(duì)時(shí)延和隱私的需求,邊緣智能的概念在近年來(lái)受到越來(lái)越高的認(rèn)同。正是看到了如此廣闊的市場(chǎng)機(jī)遇,包括互聯(lián)網(wǎng)廠商、IT企業(yè)、工業(yè)巨頭在內(nèi)的玩家紛紛入局該領(lǐng)域,Edge AI相關(guān)解決方案也在各行各業(yè)落地開(kāi)花。

  然而,想搞邊緣智能容易,想搞好邊緣智能卻很難,想用邊緣智能創(chuàng)造出可觀的商業(yè)價(jià)值更是難上加難。

  在此前的2021聯(lián)想創(chuàng)新科技大會(huì)上,聯(lián)想大腦Edge AI正式發(fā)布。近日,物聯(lián)網(wǎng)智庫(kù)等媒體和聯(lián)想集團(tuán)副總裁、聯(lián)想研究院人工智能實(shí)驗(yàn)室負(fù)責(zé)人范建平博士以及聯(lián)想商用IoT業(yè)務(wù)總經(jīng)理王磊就Edge AI的構(gòu)成機(jī)制、行業(yè)價(jià)值和布局思路進(jìn)行了深入溝通。

  通過(guò)他們的分享,我們知道,要想讓Edge AI真正賦能千行百業(yè),需要踩過(guò)技術(shù)、場(chǎng)景、商業(yè)等數(shù)個(gè)“大坑”,尤其要摒棄“拿著錘子找釘子”的行為。

  踩過(guò)“技術(shù)”的坑:從云端到邊緣

  通俗來(lái)講,傳統(tǒng)的云計(jì)算很像是自來(lái)水廠的供水模式,雖然需要計(jì)算資源的時(shí)候擰開(kāi)“水龍頭”就能按需取用,但是“集中式統(tǒng)一供水模式”也會(huì)存在很多問(wèn)題。

  首先,每家每戶用水量的增加(數(shù)據(jù)量激增)使得水廠(云端)有些不堪重負(fù);其次,水從水廠流到水龍頭需要一定的延遲時(shí)間(時(shí)延);最后,一旦供水廠出現(xiàn)問(wèn)題,就會(huì)影響到整張供水網(wǎng)絡(luò)的運(yùn)作(隱私安全)。而邊緣智能則很像在靠近家庭水龍頭的地方安裝了一個(gè)“應(yīng)急水箱”,來(lái)應(yīng)對(duì)云端負(fù)載、時(shí)延和隱私等方面帶來(lái)的挑戰(zhàn)。

  據(jù)范博士所述,Edge AI的部署需要先在云端預(yù)訓(xùn)練模型(Pre-train model),然后再下發(fā)到邊緣側(cè),這就會(huì)涉及第一個(gè)技術(shù)難題——當(dāng)把在云端預(yù)訓(xùn)練的模型部署在邊緣側(cè)時(shí),預(yù)訓(xùn)練模型和邊緣設(shè)備之間可能不是完全匹配。

  形象點(diǎn)兒來(lái)說(shuō),云端“水廠”的儲(chǔ)量很大,邊緣側(cè)“水箱”的儲(chǔ)量很小,部署Edge AI的過(guò)程需要涉及模型的量化、壓縮等操作。

  至于模型和硬件相匹配的問(wèn)題,據(jù)悉,基于智能推薦算法,聯(lián)想如今已經(jīng)可以通過(guò)Edge AI平臺(tái),給客戶提供最優(yōu)的AI模型和與硬件相匹配的方案,將硬件和軟件進(jìn)行良好的適配,讓軟硬件之間實(shí)現(xiàn)真正的協(xié)同。由此,客戶在開(kāi)發(fā)過(guò)程中甚至可以不用真正的硬件,而是通過(guò)仿真軟件去實(shí)現(xiàn)軟硬件的適配。

  當(dāng)模型被部署到邊緣側(cè)以后,第二個(gè)技術(shù)難題又不約而來(lái)。這是因?yàn)椋茖W(xué)家在云端預(yù)訓(xùn)練模型的時(shí)候,收集的都是歷史數(shù)據(jù),但實(shí)際應(yīng)用場(chǎng)景卻是千變?nèi)f化的。也就是說(shuō),訓(xùn)練數(shù)據(jù)和測(cè)試數(shù)據(jù)可能完全不一樣,模型的訓(xùn)練環(huán)境和實(shí)際的運(yùn)行環(huán)境也可能完全不相同——如何在邊緣側(cè)更新模型成了關(guān)鍵。

  顯然,任何模型的更新都需要數(shù)據(jù)作為支撐,但糟糕的是,在邊緣側(cè)卻往往很難收集到足夠多有效的樣本數(shù)據(jù)。以智能工廠的瑕疵檢測(cè)場(chǎng)景為例,我們不能指望產(chǎn)線80%都是廢品,如果這樣工廠早倒閉了。實(shí)際的廢品率可能只有千分之一甚至萬(wàn)分之一,所以模型能拿到的缺陷樣本數(shù)是非常少的。在這種情況下,AI必須能夠像人一樣,從小樣本中去學(xué)習(xí)。

  為了解決這個(gè)問(wèn)題,聯(lián)想創(chuàng)新地將“數(shù)據(jù)增強(qiáng)”和“元學(xué)習(xí)”結(jié)合,打造了“小樣本終身學(xué)習(xí)技術(shù)”。

  舉個(gè)通俗易懂的例子,學(xué)開(kāi)車(chē)。比如,你會(huì)開(kāi)小轎車(chē),但需要學(xué)習(xí)開(kāi)大卡車(chē)。兩者雖然存在不少差異,但會(huì)開(kāi)小轎車(chē)的話,學(xué)開(kāi)大卡車(chē)總比從零開(kāi)始學(xué)更容易,因?yàn)橛行┗A(chǔ)可以借鑒。這就是meta learning(元學(xué)習(xí))的原理。通過(guò)借鑒不同任務(wù)的相似之處,來(lái)實(shí)現(xiàn)任務(wù)層面的學(xué)習(xí)能力泛化,提升模型不斷適應(yīng)新任務(wù)的能力。

  此外,聯(lián)想還通過(guò)原始樣本空間增強(qiáng)、模型特征空間中數(shù)據(jù)擴(kuò)充、風(fēng)格遷移等方式,擴(kuò)充了樣本容量,豐富了數(shù)據(jù)分布,進(jìn)一步提升了模型的學(xué)習(xí)能力,從而實(shí)現(xiàn)終身學(xué)習(xí)。

  踩過(guò)“場(chǎng)景”的坑:摒棄“拿著錘子找釘子”

  解決了技術(shù)上的問(wèn)題,并不意味著高枕無(wú)憂,甚至很多做技術(shù)的企業(yè)還會(huì)陷入“拿著錘子找釘子”的誤區(qū)——也就是拿著技術(shù)去找場(chǎng)景,這顯然是一種本末倒置的行為。工業(yè)領(lǐng)域存在很多典型的應(yīng)用場(chǎng)景,只要能切實(shí)解決客戶的痛點(diǎn),幫助其提質(zhì)增效,就不愁沒(méi)有人買(mǎi)單。

  而在場(chǎng)景方面,聯(lián)想天然具備優(yōu)勢(shì)。作為一家智能制造企業(yè),聯(lián)想打造了全球化的生產(chǎn)基地布局,集團(tuán)在全球擁有35家制造工廠。過(guò)去幾年,聯(lián)想的各個(gè)工廠致力推進(jìn)產(chǎn)線的自動(dòng)化和數(shù)字化,積累了豐富的實(shí)踐經(jīng)驗(yàn),這正是Edge AI落地最好的土壤。

  范博士也分享了一些聯(lián)想的實(shí)踐案例。

  在聯(lián)想深圳工廠為微軟生產(chǎn)服務(wù)器的時(shí)候,客戶的一個(gè)基本要求是生產(chǎn)區(qū)域不能有外部人員隨意進(jìn)入。傳統(tǒng)的做法是依靠人工坐在門(mén)口進(jìn)行監(jiān)控,但這種做法顯然費(fèi)時(shí)費(fèi)力,而且人總會(huì)有疲憊和需要休息的時(shí)候。Edge AI的解決方案則能輕易替代人工,實(shí)時(shí)監(jiān)控是否有非授權(quán)的人員進(jìn)入,而且由于數(shù)據(jù)保留在本地,也不會(huì)侵犯員工的隱私安全。

  除了聯(lián)想自己的工廠,越來(lái)越多的客戶也正受益于此。例如,為保障印刷業(yè)的領(lǐng)軍企業(yè)高斯中國(guó)的順暢運(yùn)行,聯(lián)想從以前只賣(mài)PC,到后來(lái)提供邊緣計(jì)算設(shè)備,以及Leap IoT平臺(tái)等,實(shí)現(xiàn)了高斯中國(guó)的遠(yuǎn)程云管理,使得其設(shè)備故障率降低了50%,高斯員工的出差成本降低了65%,售后服務(wù)的客戶滿意度提升了80%。

  “是歷史機(jī)遇選擇了聯(lián)想,而不是聯(lián)想在做選擇?!狈恫┦咳绱诵稳萋?lián)想在邊緣智能的布局。

  根據(jù)Gartner的預(yù)測(cè)顯示,截止到2025年將會(huì)有75%的數(shù)據(jù)在數(shù)據(jù)中心和云之外的邊緣側(cè)產(chǎn)生。同時(shí),未來(lái)邊緣計(jì)算市場(chǎng)規(guī)模將超萬(wàn)億,成為與云計(jì)算平分秋色的新興市場(chǎng)。在這樣的背景下,聯(lián)想入局邊緣智能恰逢其時(shí)——這是“天時(shí)”。

  其次,聯(lián)想作為制造企業(yè),自己有很多應(yīng)用場(chǎng)景,客戶也有很多應(yīng)用場(chǎng)景,聯(lián)想在服務(wù)客戶的過(guò)程中積累了許多洞察與經(jīng)驗(yàn)——這是“地利”。

  最后,以范博士為代表的科學(xué)家團(tuán)隊(duì)始終專(zhuān)注于AI技術(shù)的研究,正如范博士所說(shuō),“我們不是最聰明的一群人,也不是配置的最高的一群人,但是我們確實(shí)始終以客戶為己任。”——這是“人和”。

  “天時(shí)地利人和”,賦予了聯(lián)想做好Edge AI的底氣。

  踩過(guò)“商業(yè)”的坑:破解碎片化難題

  有了技術(shù)并且找到了合適的場(chǎng)景,就意味著萬(wàn)事大吉嗎?答案依然是否定的。

  即使是同一臺(tái)設(shè)備,在不同工況下其劣變程度都有可能不同,更何況是“隔行如隔山”的千行百業(yè)呢。邊緣智能的場(chǎng)景碎片化程度很強(qiáng),需求非常復(fù)雜,隨定制化而變化,導(dǎo)致很多邊緣解決方案的通用性和復(fù)用性不夠強(qiáng)。

  “如果一個(gè)場(chǎng)景一個(gè)場(chǎng)景(case by case)的去做,一定是死路一條?!狈恫┦恐毖裕奥?lián)想破解碎片化難題的做法是80%的底層技術(shù)依靠平臺(tái)實(shí)現(xiàn),剩下20%左右是場(chǎng)景化的東西?!?/p>

  從這個(gè)角度來(lái)說(shuō),Edge AI更像是一個(gè)應(yīng)用商店,其中包含各種算法和模型,客戶可以靈活選擇,極大地減少開(kāi)發(fā)、設(shè)計(jì)等人力成本。

  面向?qū)I技術(shù)本身有一定了解的客戶,聯(lián)想為其提供人員檢測(cè)、車(chē)流監(jiān)測(cè)、語(yǔ)音識(shí)別等基本模塊,開(kāi)發(fā)人員能夠以拖拽的方式如同搭積木一般快速組合自己的解決方案;面向沒(méi)有AI背景知識(shí)的客戶,集成商只需將自己的預(yù)算和場(chǎng)景輸入平臺(tái),形成約束條件,平臺(tái)依然可以自動(dòng)生成相應(yīng)的解決方案。

  換言之,聯(lián)想提供的只是底層的基礎(chǔ)能力,上層的應(yīng)用還需要生態(tài)系統(tǒng)里的萬(wàn)千客戶去依據(jù)需求構(gòu)建。

  王磊則從另一個(gè)角度闡述了如何從定制化走向通用化:“最開(kāi)始我們?cè)谧鲰?xiàng)目,在做項(xiàng)目的過(guò)程中會(huì)有一些工具產(chǎn)生,當(dāng)把這樣的工具用于更多的項(xiàng)目時(shí),工具就會(huì)變成通用的產(chǎn)品。產(chǎn)品再往上迭代,就是平臺(tái)了??蛻綦m然是不同的,但我們會(huì)把共性的東西抽象出來(lái),形成平臺(tái)和生態(tài)?!?/p>

  目前,聯(lián)想Edge AI平臺(tái)已經(jīng)通過(guò)聯(lián)想企業(yè)科技集團(tuán)實(shí)現(xiàn)了產(chǎn)品化,推出了LiCO AI、AI一體機(jī)等功能強(qiáng)大的AI產(chǎn)品與解決方案,被廣泛應(yīng)用于人工智能數(shù)據(jù)中心、智能制造、工業(yè)物聯(lián)網(wǎng)、智慧城市、智能零售、智能音箱和智能家居等各個(gè)方面。在自動(dòng)駕駛領(lǐng)域,可以做到行人識(shí)別、車(chē)輛識(shí)別、信號(hào)燈識(shí)別等。

  結(jié)語(yǔ)

  智能化轉(zhuǎn)型非一朝一夕之事,更不能憑一己之力扭轉(zhuǎn)乾坤。聯(lián)想憑借商用IoT生態(tài)、聯(lián)合行業(yè)合作伙伴的力量,以及自身在硬件的定制化優(yōu)勢(shì),通過(guò)Edge AI平臺(tái)算法能力和強(qiáng)大的服務(wù)體系,可以幫助用戶以更快、更好、更低成本的商業(yè)模式和技術(shù)形態(tài),加速各行各業(yè)的邊緣智能化轉(zhuǎn)型,進(jìn)而全面撬動(dòng)數(shù)智新時(shí)代!




1.png

本站內(nèi)容除特別聲明的原創(chuàng)文章之外,轉(zhuǎn)載內(nèi)容只為傳遞更多信息,并不代表本網(wǎng)站贊同其觀點(diǎn)。轉(zhuǎn)載的所有的文章、圖片、音/視頻文件等資料的版權(quán)歸版權(quán)所有權(quán)人所有。本站采用的非本站原創(chuàng)文章及圖片等內(nèi)容無(wú)法一一聯(lián)系確認(rèn)版權(quán)者。如涉及作品內(nèi)容、版權(quán)和其它問(wèn)題,請(qǐng)及時(shí)通過(guò)電子郵件或電話通知我們,以便迅速采取適當(dāng)措施,避免給雙方造成不必要的經(jīng)濟(jì)損失。聯(lián)系電話:010-82306118;郵箱:aet@chinaaet.com。