試想,一輛正在急速前進的自動駕駛汽車,前方突然遇到障礙需要緊急剎車,這時它不可能把相關(guān)信息送到云端處理再反饋,否則等剎車指令下達的時候很可能已經(jīng)發(fā)生撞車事故了。
類似的,在軋鋼這樣的工業(yè)場景中,軋機需要依靠多個伺服電機協(xié)同驅(qū)動軋制過程,電機不能出現(xiàn)絲毫的偏差,否則可能導(dǎo)致整塊鋼板報廢。為了保證軋制精度,需要以毫秒級的數(shù)據(jù)采集頻率來監(jiān)測電機的運轉(zhuǎn)是否正常,實時數(shù)據(jù)上云顯然也是來不及的。
除了時延,隱私安全近年來也成為個人和企業(yè)越發(fā)關(guān)注的問題。比如,在傳統(tǒng)的人臉識別場景下,智能終端需要將收集到面部信息上傳到云服務(wù)器進行處理,從而為數(shù)據(jù)泄露或被濫用埋下了隱患。而對企業(yè)來說,商業(yè)隱私甚至關(guān)乎其生死存亡,因此大多數(shù)企業(yè)都不愿意把核心數(shù)據(jù)放在云平臺廠商的服務(wù)器上。
出于對時延和隱私的需求,邊緣智能的概念在近年來受到越來越高的認同。正是看到了如此廣闊的市場機遇,包括互聯(lián)網(wǎng)廠商、IT企業(yè)、工業(yè)巨頭在內(nèi)的玩家紛紛入局該領(lǐng)域,Edge AI相關(guān)解決方案也在各行各業(yè)落地開花。
然而,想搞邊緣智能容易,想搞好邊緣智能卻很難,想用邊緣智能創(chuàng)造出可觀的商業(yè)價值更是難上加難。
在此前的2021聯(lián)想創(chuàng)新科技大會上,聯(lián)想大腦Edge AI正式發(fā)布。近日,物聯(lián)網(wǎng)智庫等媒體和聯(lián)想集團副總裁、聯(lián)想研究院人工智能實驗室負責(zé)人范建平博士以及聯(lián)想商用IoT業(yè)務(wù)總經(jīng)理王磊就Edge AI的構(gòu)成機制、行業(yè)價值和布局思路進行了深入溝通。
通過他們的分享,我們知道,要想讓Edge AI真正賦能千行百業(yè),需要踩過技術(shù)、場景、商業(yè)等數(shù)個“大坑”,尤其要摒棄“拿著錘子找釘子”的行為。
踩過“技術(shù)”的坑:從云端到邊緣
通俗來講,傳統(tǒng)的云計算很像是自來水廠的供水模式,雖然需要計算資源的時候擰開“水龍頭”就能按需取用,但是“集中式統(tǒng)一供水模式”也會存在很多問題。
首先,每家每戶用水量的增加(數(shù)據(jù)量激增)使得水廠(云端)有些不堪重負;其次,水從水廠流到水龍頭需要一定的延遲時間(時延);最后,一旦供水廠出現(xiàn)問題,就會影響到整張供水網(wǎng)絡(luò)的運作(隱私安全)。而邊緣智能則很像在靠近家庭水龍頭的地方安裝了一個“應(yīng)急水箱”,來應(yīng)對云端負載、時延和隱私等方面帶來的挑戰(zhàn)。
據(jù)范博士所述,Edge AI的部署需要先在云端預(yù)訓(xùn)練模型(Pre-train model),然后再下發(fā)到邊緣側(cè),這就會涉及第一個技術(shù)難題——當(dāng)把在云端預(yù)訓(xùn)練的模型部署在邊緣側(cè)時,預(yù)訓(xùn)練模型和邊緣設(shè)備之間可能不是完全匹配。
形象點兒來說,云端“水廠”的儲量很大,邊緣側(cè)“水箱”的儲量很小,部署Edge AI的過程需要涉及模型的量化、壓縮等操作。
至于模型和硬件相匹配的問題,據(jù)悉,基于智能推薦算法,聯(lián)想如今已經(jīng)可以通過Edge AI平臺,給客戶提供最優(yōu)的AI模型和與硬件相匹配的方案,將硬件和軟件進行良好的適配,讓軟硬件之間實現(xiàn)真正的協(xié)同。由此,客戶在開發(fā)過程中甚至可以不用真正的硬件,而是通過仿真軟件去實現(xiàn)軟硬件的適配。
當(dāng)模型被部署到邊緣側(cè)以后,第二個技術(shù)難題又不約而來。這是因為,科學(xué)家在云端預(yù)訓(xùn)練模型的時候,收集的都是歷史數(shù)據(jù),但實際應(yīng)用場景卻是千變?nèi)f化的。也就是說,訓(xùn)練數(shù)據(jù)和測試數(shù)據(jù)可能完全不一樣,模型的訓(xùn)練環(huán)境和實際的運行環(huán)境也可能完全不相同——如何在邊緣側(cè)更新模型成了關(guān)鍵。
顯然,任何模型的更新都需要數(shù)據(jù)作為支撐,但糟糕的是,在邊緣側(cè)卻往往很難收集到足夠多有效的樣本數(shù)據(jù)。以智能工廠的瑕疵檢測場景為例,我們不能指望產(chǎn)線80%都是廢品,如果這樣工廠早倒閉了。實際的廢品率可能只有千分之一甚至萬分之一,所以模型能拿到的缺陷樣本數(shù)是非常少的。在這種情況下,AI必須能夠像人一樣,從小樣本中去學(xué)習(xí)。
為了解決這個問題,聯(lián)想創(chuàng)新地將“數(shù)據(jù)增強”和“元學(xué)習(xí)”結(jié)合,打造了“小樣本終身學(xué)習(xí)技術(shù)”。
舉個通俗易懂的例子,學(xué)開車。比如,你會開小轎車,但需要學(xué)習(xí)開大卡車。兩者雖然存在不少差異,但會開小轎車的話,學(xué)開大卡車總比從零開始學(xué)更容易,因為有些基礎(chǔ)可以借鑒。這就是meta learning(元學(xué)習(xí))的原理。通過借鑒不同任務(wù)的相似之處,來實現(xiàn)任務(wù)層面的學(xué)習(xí)能力泛化,提升模型不斷適應(yīng)新任務(wù)的能力。
此外,聯(lián)想還通過原始樣本空間增強、模型特征空間中數(shù)據(jù)擴充、風(fēng)格遷移等方式,擴充了樣本容量,豐富了數(shù)據(jù)分布,進一步提升了模型的學(xué)習(xí)能力,從而實現(xiàn)終身學(xué)習(xí)。
踩過“場景”的坑:摒棄“拿著錘子找釘子”
解決了技術(shù)上的問題,并不意味著高枕無憂,甚至很多做技術(shù)的企業(yè)還會陷入“拿著錘子找釘子”的誤區(qū)——也就是拿著技術(shù)去找場景,這顯然是一種本末倒置的行為。工業(yè)領(lǐng)域存在很多典型的應(yīng)用場景,只要能切實解決客戶的痛點,幫助其提質(zhì)增效,就不愁沒有人買單。
而在場景方面,聯(lián)想天然具備優(yōu)勢。作為一家智能制造企業(yè),聯(lián)想打造了全球化的生產(chǎn)基地布局,集團在全球擁有35家制造工廠。過去幾年,聯(lián)想的各個工廠致力推進產(chǎn)線的自動化和數(shù)字化,積累了豐富的實踐經(jīng)驗,這正是Edge AI落地最好的土壤。
范博士也分享了一些聯(lián)想的實踐案例。
在聯(lián)想深圳工廠為微軟生產(chǎn)服務(wù)器的時候,客戶的一個基本要求是生產(chǎn)區(qū)域不能有外部人員隨意進入。傳統(tǒng)的做法是依靠人工坐在門口進行監(jiān)控,但這種做法顯然費時費力,而且人總會有疲憊和需要休息的時候。Edge AI的解決方案則能輕易替代人工,實時監(jiān)控是否有非授權(quán)的人員進入,而且由于數(shù)據(jù)保留在本地,也不會侵犯員工的隱私安全。
除了聯(lián)想自己的工廠,越來越多的客戶也正受益于此。例如,為保障印刷業(yè)的領(lǐng)軍企業(yè)高斯中國的順暢運行,聯(lián)想從以前只賣PC,到后來提供邊緣計算設(shè)備,以及Leap IoT平臺等,實現(xiàn)了高斯中國的遠程云管理,使得其設(shè)備故障率降低了50%,高斯員工的出差成本降低了65%,售后服務(wù)的客戶滿意度提升了80%。
“是歷史機遇選擇了聯(lián)想,而不是聯(lián)想在做選擇?!狈恫┦咳绱诵稳萋?lián)想在邊緣智能的布局。
根據(jù)Gartner的預(yù)測顯示,截止到2025年將會有75%的數(shù)據(jù)在數(shù)據(jù)中心和云之外的邊緣側(cè)產(chǎn)生。同時,未來邊緣計算市場規(guī)模將超萬億,成為與云計算平分秋色的新興市場。在這樣的背景下,聯(lián)想入局邊緣智能恰逢其時——這是“天時”。
其次,聯(lián)想作為制造企業(yè),自己有很多應(yīng)用場景,客戶也有很多應(yīng)用場景,聯(lián)想在服務(wù)客戶的過程中積累了許多洞察與經(jīng)驗——這是“地利”。
最后,以范博士為代表的科學(xué)家團隊始終專注于AI技術(shù)的研究,正如范博士所說,“我們不是最聰明的一群人,也不是配置的最高的一群人,但是我們確實始終以客戶為己任?!薄@是“人和”。
“天時地利人和”,賦予了聯(lián)想做好Edge AI的底氣。
踩過“商業(yè)”的坑:破解碎片化難題
有了技術(shù)并且找到了合適的場景,就意味著萬事大吉嗎?答案依然是否定的。
即使是同一臺設(shè)備,在不同工況下其劣變程度都有可能不同,更何況是“隔行如隔山”的千行百業(yè)呢。邊緣智能的場景碎片化程度很強,需求非常復(fù)雜,隨定制化而變化,導(dǎo)致很多邊緣解決方案的通用性和復(fù)用性不夠強。
“如果一個場景一個場景(case by case)的去做,一定是死路一條?!狈恫┦恐毖裕奥?lián)想破解碎片化難題的做法是80%的底層技術(shù)依靠平臺實現(xiàn),剩下20%左右是場景化的東西?!?/p>
從這個角度來說,Edge AI更像是一個應(yīng)用商店,其中包含各種算法和模型,客戶可以靈活選擇,極大地減少開發(fā)、設(shè)計等人力成本。
面向?qū)I技術(shù)本身有一定了解的客戶,聯(lián)想為其提供人員檢測、車流監(jiān)測、語音識別等基本模塊,開發(fā)人員能夠以拖拽的方式如同搭積木一般快速組合自己的解決方案;面向沒有AI背景知識的客戶,集成商只需將自己的預(yù)算和場景輸入平臺,形成約束條件,平臺依然可以自動生成相應(yīng)的解決方案。
換言之,聯(lián)想提供的只是底層的基礎(chǔ)能力,上層的應(yīng)用還需要生態(tài)系統(tǒng)里的萬千客戶去依據(jù)需求構(gòu)建。
王磊則從另一個角度闡述了如何從定制化走向通用化:“最開始我們在做項目,在做項目的過程中會有一些工具產(chǎn)生,當(dāng)把這樣的工具用于更多的項目時,工具就會變成通用的產(chǎn)品。產(chǎn)品再往上迭代,就是平臺了??蛻綦m然是不同的,但我們會把共性的東西抽象出來,形成平臺和生態(tài)?!?/p>
目前,聯(lián)想Edge AI平臺已經(jīng)通過聯(lián)想企業(yè)科技集團實現(xiàn)了產(chǎn)品化,推出了LiCO AI、AI一體機等功能強大的AI產(chǎn)品與解決方案,被廣泛應(yīng)用于人工智能數(shù)據(jù)中心、智能制造、工業(yè)物聯(lián)網(wǎng)、智慧城市、智能零售、智能音箱和智能家居等各個方面。在自動駕駛領(lǐng)域,可以做到行人識別、車輛識別、信號燈識別等。
結(jié)語
智能化轉(zhuǎn)型非一朝一夕之事,更不能憑一己之力扭轉(zhuǎn)乾坤。聯(lián)想憑借商用IoT生態(tài)、聯(lián)合行業(yè)合作伙伴的力量,以及自身在硬件的定制化優(yōu)勢,通過Edge AI平臺算法能力和強大的服務(wù)體系,可以幫助用戶以更快、更好、更低成本的商業(yè)模式和技術(shù)形態(tài),加速各行各業(yè)的邊緣智能化轉(zhuǎn)型,進而全面撬動數(shù)智新時代!