《電子技術應用》
您所在的位置:首頁 > 其他 > 設計應用 > 基于多特征融合的商品識圖匹配算法研究
基于多特征融合的商品識圖匹配算法研究
信息技術與網絡安全
王鑫城,范 紅,劉錫澤,胡晨熙,林 威,禹素萍
(東華大學 信息科學與技術學院,上海201620)
摘要: 隨著近幾年無人超市的不斷發(fā)展成熟,自助購物越來越普及。如果商品售出后沒能及時補充,會影響消費者的購買意愿。為提升商品圖像識別的準確率,采用多特征融合的方法,即將多種算法的特征聯(lián)合,形成優(yōu)勢互補。采用融合SIFT特征和灰度共生矩陣特征的方法完成貨架商品圖像的匹配。實驗表明,該方法對比灰度共生矩陣方法準確率提升20.6%,對比SIFT算法和PCA-SIFT算法準確率分別提升8.9%和5.6%;處理時間對比以上三種算法略有增加。此方法還可用于分析貨物受歡迎程度以及確認哪些柜臺需要加貨等,從而及時有效地對短缺的商品進行補充。
中圖分類號: TP391
文獻標識碼: A
DOI: 10.19358/j.issn.2096-5133.2021.04.011
引用格式: 王鑫城,范紅,劉錫澤,等. 基于多特征融合的商品識圖匹配算法研究[J].信息技術與網絡安全,2021,
40(4):70-74.
Matching algorithm of product image based on multi-feature fusion
Wang Xincheng,Fan Hong,Liu Xize,Hu Chenxi,Lin Wei,Yu Suping
(College of Infrmation Science and Technology,Donghua University,Shanghai 201620,China)
Abstract: With the continuous development of unmanned supermarkets in recent years, self-service shopping has become more and more popular. If the goods are not replenished in time after they are sold, it will affect consumers′ willingness to buy. In order to improve the accuracy of product image recognition, a multi-feature fusion method is adopted, that is, the features of multiple algorithms are combined to form complementary advantages. The method of fusing SIFT features and gray level co-occurrence matrix features is used in this paper to complete the matching of shelf product images. Experiments show that the accuracy of this method is increased by 20.6% compared with the gray-level co-occurrence matrix method, and the accuracy of the SIFT algorithm and the PCA-SIFT algorithm are increased by 8.9% and 5.6% respectively; the processing time is slightly increased compared with the above three algorithms. This method can also be used to analyze the popularity of goods and confirm which counters need to be restocked, so as to supplement the shortage of goods in a timely and effective manner.
Key words : image matching;SIFT features;gray level co-occurrence matrix;feature fusion

0 引言

隨著人工智能的不斷發(fā)展,對圖像進行特征提取并通過特征匹配完成對目標的對比及識別,成為了計算機視覺領域中最主要的手段之一,并在大量領域有著廣泛的應用,如人臉識別、車牌檢測、無人駕駛和醫(yī)學診斷等。對于商品貨架圖片而言,特征點的提取數量與匹配的精度會對商家后續(xù)的運作有較大的影響。在圖像匹配算法研究中,最為常見的莫過于尺度不變特征變換算法(Scale-Invariant Feature Transform,SIFT),經典SIFT算法由LOWE D G在1999年提出[1],并于2004年完善[2]。該算法穩(wěn)定性高,對旋轉、尺度縮放和亮度變換保持不變性。傳統(tǒng)SIFT算法的描述子是具有128維的特征向量,在特征點的特征向量生成以及最后進行匹配的過程中需要大量的運行時間。因此,降低特征向量的維數是學者們的一個重要研究方向,如SPCA、PCA[3]算法。另一個研究方向是采用特殊結構[4],基于二分查找的思想,對得到的特征描述子進行劃分,同時結合KNN算法,加快特征向量的匹配搜索速度,常用的結構有KD-Tree[5]等。2006年BAY H提出SUFR(Speeded Up Robust Features)[6]算法,提升了特征提取速度,但在對尺度和旋轉的適應性方面不及SIFT算法。秦緒佳[7]提出在特征匹配中引入灰度域和空間域的自相關性,提高匹配準確性,但增加了算法復雜度,耗時大。RUBLEE E等[8]結合了BRIEF算法和FAST算法,提出了ORB算法來解決旋轉不變性問題,但其特征符的區(qū)分性弱,匹配效果一般。



本文詳細內容請下載:http://ihrv.cn/resource/share/2000003480




作者信息:

王鑫城,范  紅,劉錫澤,胡晨熙,林  威,禹素萍

(東華大學 信息科學與技術學院,上海201620)


此內容為AET網站原創(chuàng),未經授權禁止轉載。