文獻(xiàn)標(biāo)識(shí)碼: A
DOI: 10.19358/j.issn.2096-5133.2021.02.006
引用格式: 楊雨鑫,周欣,熊淑華,等. 融合傳統(tǒng)特征與神經(jīng)網(wǎng)絡(luò)的深度偽造檢測(cè)算法[J].信息技術(shù)與網(wǎng)絡(luò)安全,2021,40(2):33-38,44.
0 引言
深度偽造是利用深度學(xué)習(xí)算法生成偽造人臉圖像/視頻技術(shù)的總稱。這種視覺(jué)合成技術(shù)根據(jù)實(shí)現(xiàn)方式的不同,具體細(xì)分為DeepFake、Face2Face[1]、FaceSwap[2]等。該技術(shù)可以將圖像中已有的面部表情和動(dòng)作提取出來(lái),合成另一張人臉替代原圖臉部區(qū)域,最終制造出人眼難以區(qū)分的虛假圖像/視頻。
2019年,SnapChat和ZAO等應(yīng)用程序?qū)崿F(xiàn)了用戶與電影明星換臉的功能,深度偽造技術(shù)快速進(jìn)入公眾視野并引發(fā)關(guān)注。與此同時(shí),普通人可以利用開源的深度偽造程序生成逼真的人臉圖像/視頻,使得眾多公眾人物陷入遭受深度偽造技術(shù)攻擊的風(fēng)險(xiǎn)之中。龍坤[3]等人從國(guó)家政治安全、經(jīng)濟(jì)安全、社會(huì)安全、國(guó)民安全方面論述了深度偽造技術(shù)帶來(lái)的潛在危害,美國(guó)國(guó)防高級(jí)研究計(jì)劃署也在同年針對(duì)虛假圖像/視頻發(fā)起檢測(cè)項(xiàng)目。因此,針對(duì)深度偽造算法生成圖像的檢測(cè)工作變得越來(lái)越重要。
本文詳細(xì)內(nèi)容請(qǐng)下載:http://ihrv.cn/resource/share/2000003376
作者信息:
楊雨鑫1,周 欣1,2,熊淑華1,何小海1,卿粼波1
(1.四川大學(xué) 電子信息學(xué)院,四川 成都610065;2.中國(guó)信息安全測(cè)評(píng)中心,北京100085)