文獻標識碼: A
DOI:10.16157/j.issn.0258-7998.190998
中文引用格式: 陳悅寧,郭士增,張佳巖,等. 基于優(yōu)化BP神經(jīng)網(wǎng)絡(luò)的水稻病害識別算法研究[J].電子技術(shù)應(yīng)用,2020,46(9):85-87,93.
英文引用格式: Chen Yuening,Guo Shizeng,Zhang Jiayan,et al. Research on rice disease recognition algorithms based on optimized BP neural network[J]. Application of Electronic Technique,2020,46(9):85-87,93.
0 引言
利用計算機視覺技術(shù)結(jié)合圖像處理和機器學習的手段,可以通過植物葉片的外在特征來識別水稻等植物的不同病害,減輕人工工作量,并在保證準確率的同時提高效率。植物病害的識別算法分為病害圖像目標分割算法和病害圖像模型分類算法兩大部分。
在植物病害圖像目標分割的研究中,張武等人[1]在2015年基于K-均值聚類算法和最大類間方差法進行小麥病害圖像分割,準確率超過95%;馬媛等人[2]在2016年利用方向梯度直方圖特征結(jié)合均值漂移算法監(jiān)督葡萄生長狀態(tài)與病蟲害,該方法取得了80%以上的準確率;MAI X等人[3]在2016年針對水稻病葉的顏色、紋理等特征,將超像素算法和隨機森林分類器相結(jié)合,圈定了病斑區(qū)域。
在植物病害圖像模型分類的研究中,2014年張善文等人[4]利用局部判別映射算法結(jié)合最近鄰分類器,將玉米病斑圖像重組為向量并進行識別,得到高于90%的準確率;陳俊伸[5]在2019年改進了深度卷積神經(jīng)網(wǎng)絡(luò)模型進行水稻葉瘟病識別,與人工抽樣調(diào)查結(jié)果交叉驗證的Kappa系數(shù)為0.78,具有較高一致性。
圖像處理和機器學習算法在識別作物病害方向取得了較好成效。然而受到圖像集效果和作物不同外在特征的影響,算法還有優(yōu)化空間。本文對水稻的3種常見病害[6]識別進行研究,同樣將識別過程分為兩個環(huán)節(jié):首先對圖像進行預(yù)處理,從中提取病斑特征并降維,用于后續(xù)分類;然后使用BP神經(jīng)網(wǎng)絡(luò)算法對水稻病害進行識別,將其與自適應(yīng)遺傳算法和模擬退火算法結(jié)合后作為最終分類器[7]。
本文詳細內(nèi)容請下載:http://ihrv.cn/resource/share/2000002988
作者信息:
陳悅寧,郭士增,張佳巖,蒲一鳴
(哈爾濱工業(yè)大學 電子與信息工程學院,黑龍江 哈爾濱150001)