文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.191412
中文引用格式: 李太文,范昕煒. 基于Faster R-CNN的道路裂縫識別[J].電子技術(shù)應(yīng)用,2020,46(7):53-56,59.
英文引用格式: Li Taiwen,F(xiàn)an Xinwei. Road crevice recognition based on Faster R-CNN[J]. Application of Electronic Technique,2020,46(7):53-56,59.
0 引言
近幾十年公路在中國得到蓬勃發(fā)展,保養(yǎng)維護(hù)也日益成為一個問題,需要定期對路面狀況進(jìn)行檢查,以便制定相應(yīng)的維護(hù)策略,其中重要的一項指標(biāo)是路面裂縫。若能在裂縫的出現(xiàn)初期就能發(fā)現(xiàn),并及時跟蹤它的發(fā)展情況,那么它的維護(hù)費(fèi)用將大大降低。如何在不影響正常的交通情況下對整段路面進(jìn)行實時的監(jiān)測,成為亟待解決的一大難題。傳統(tǒng)的基于人工視覺的識別方法越來越不能適應(yīng)高速公路發(fā)展的要求,其耗人力、耗時、危險、花費(fèi)高、效率低,還影響正常的交通。計算機(jī)高性能處理器、大容量存儲器以及圖像處理技術(shù)的快速發(fā)展,使得路面裂縫的實時自動識別與識別技術(shù)成為可能。文獻(xiàn)[1]提出基于改進(jìn)K-means算法的不均勻光照下道路裂縫識別,文獻(xiàn)[2]對基于數(shù)字圖像的混凝土道路裂縫識別方法進(jìn)行了描述,傳統(tǒng)的裂縫目標(biāo)識別算法有基于SVM[3-4]、HOG[5]特征和DPM[6]等多種方法,但這些方法在識別過程中分多個階段進(jìn)行識別,精度不高且檢測速度慢。針對傳統(tǒng)的裂縫目標(biāo)識別方法存在的不足,本文提出一種基于Faster-RCNN[7](Faster Region-Convolutional Neural Network)的道路裂縫識別方法,不僅可以自動提取裂縫特征,而且在識別精度和檢測速度方面也取得了良好的效果。
本文詳細(xì)內(nèi)容請下載:http://ihrv.cn/resource/share/2000002900
作者信息:
李太文,范昕煒
(中國計量大學(xué) 質(zhì)量與安全工程學(xué)院,浙江 杭州310000)