文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.190885
中文引用格式: 蔡皓天,陳星. 一種新型高效寬帶整流電路[J].電子技術(shù)應(yīng)用,2019,45(12):56-58,66.
英文引用格式: Cai Haotian,Chen Xing. A novel rectifying circuit with high efficiency and wide bandwidth[J]. Application of Electronic Technique,2019,45(12):56-58,66.
0 引言
微波無(wú)線能量傳輸(Microwave Wireless Power Transmission,MWPT)是一種以微波作為能量傳輸媒質(zhì),實(shí)現(xiàn)能量遠(yuǎn)距離無(wú)線傳輸?shù)募夹g(shù),在空間太陽(yáng)能站、無(wú)人飛行空中充電等領(lǐng)域有重大應(yīng)用前景。整流電路是微波無(wú)線能量系統(tǒng)中重要組件[1-2],承擔(dān)將接收到的微波能量轉(zhuǎn)換為直流能量的任務(wù)。
在整流電路中,抑制諧波和濾除交流是兩大重要的部分[3-4],低通濾波器常常被用來(lái)抑制二極管產(chǎn)生的高次諧波[5],近些年諧波抑制濾波器逐漸取代了前者[6-8],但是,高階諧波抑制濾波結(jié)構(gòu)限制了整流效率[9]并且電路尺寸也會(huì)偏大。在低頻的情況下,通常選擇用一個(gè)并聯(lián)的電容代替濾波部分的開路枝節(jié),能有效地減小尺寸[10-11],但是在高頻的情況下,電容濾波器的插損不可忽略,直接影響到電路的整流效率[12]。
針對(duì)上述問(wèn)題,本文設(shè)計(jì)出一種新型整流結(jié)構(gòu),既能抑制高次諧波,又減小了二極管上功率的損耗,同時(shí)擴(kuò)寬了工作帶寬并縮減了尺寸,提高了寬功率范圍內(nèi)的整流效率。
1 整流電路設(shè)計(jì)
1.1 基于ADS獲取二極管阻抗
本文采用一種常用的提取二極管阻抗的方法[13]。在ADS軟件中,先設(shè)置好實(shí)際加工中所用介質(zhì)基板的參數(shù)及二極管的相關(guān)參數(shù)。其中,所選基板為RO4003C,厚度H=32 mil,介電常數(shù)Er=3.55,損耗角正切tanD=0.002 7;負(fù)載電阻為400 Ω;二極管選用Bat15-03W(Cj0=138.5 fF,Rs=5 Ω,Vbi=0.224 V,Vbr=6.4 V)。其獲取二極管阻抗的原理圖如圖1所示。
通過(guò)Zin控件仿真得到二極管的阻抗值為35.36+j42.2 Ω。
1.2 新型整流電路匹配結(jié)構(gòu)
通過(guò)1.1節(jié)獲取的阻抗可知,虛部電抗為負(fù),呈電容抗性。通常整流電路輸入端處的匹配網(wǎng)絡(luò)有一段并聯(lián)的開路微帶線用來(lái)將電路匹配到50 Ω(常稱為單枝節(jié)匹配)。該匹配方式頻帶較窄,結(jié)構(gòu)較大。
匹配電路的目的是將二極管在特定輸入功率情況下的輸入阻抗匹配到50 Ω以便與信號(hào)源匹配,使得反射減少,這樣更多的能量饋入電路以提高整流效率。通過(guò)調(diào)節(jié)二極管前端的微帶線長(zhǎng)度,在電感抗性范圍中變化,使得二極管輸入端為一個(gè)實(shí)阻抗。再通過(guò)λ/4阻抗變換線將阻抗匹配到50 Ω。圖2為整流電路實(shí)物圖。
1.3 扇形濾波枝節(jié)的改進(jìn)
傳統(tǒng)低頻整流電路的直流濾波器由λ/4微帶線加并聯(lián)電容組成,它能夠很有效地抑制高次諧波,但是加入了過(guò)孔結(jié)構(gòu),出現(xiàn)新的寄生效應(yīng)并且代價(jià)高是其缺點(diǎn)。
因此本次電路的直流濾波部分選擇了同樣常見的兩個(gè)扇形開路枝節(jié)代替電容,扇形結(jié)構(gòu)緊湊,具有帶阻特性。
值得一提的是,本次設(shè)計(jì)的整流電路,從扇形開路枝節(jié)具有電容抗性的角度分析,該結(jié)構(gòu)具有充放電的功能,可以使脈沖直流電改善為平滑的直流,電路能可靠地工作也進(jìn)一步提高了效率。創(chuàng)新性地將|S21|和直流紋波的平滑度同時(shí)作為直流濾波器的設(shè)計(jì)指標(biāo),調(diào)節(jié)扇形枝節(jié)的參數(shù),讓該結(jié)構(gòu)兼顧濾波與平滑紋波的功能。
對(duì)比了改善紋波平滑度前后的電壓波形和|S21|的仿真結(jié)果,如圖3所示。可以看出,扇形枝節(jié)的大小直接影響輸出的直流紋波的平滑度,由0.6 V的電壓差優(yōu)化為幾乎恒定的直流電壓輸出。改善紋波平滑度后,并沒(méi)有影響其濾波能力,從濾波角度|S21|結(jié)果來(lái)看:在5.8 GHz和11.6 GHz處,傳統(tǒng)結(jié)構(gòu)|S21|分別為-30.87 dB,-38.42 dB;改進(jìn)后的|S21|分別為-32.90 dB,-21.12 dB。改進(jìn)后的扇形枝節(jié)具有更大的電容抗性,充放電的能力變強(qiáng),同時(shí)兼顧了濾除基波和二次諧波的特性。
2 測(cè)試與結(jié)果分析
首先,測(cè)試該電路在13 dBm處輸入功率的|S11|,結(jié)果如圖4所示,滿足-10 dB以下的頻率范圍從5.18 GHz至7.01 GHz,相對(duì)帶寬達(dá)到30.05%,帶寬遠(yuǎn)大于單枝節(jié)結(jié)構(gòu)匹配的整流電路。
其中,在5.8 GHz處的|S11|為-21.94 dB,匹配良好,接著以5.8 GHz作為信號(hào)發(fā)生器的工作頻率,連接上電阻設(shè)置為400 Ω的整流電路,再將萬(wàn)用表連接電阻兩端,讀取負(fù)載的輸出直流電壓,整流電路的微波轉(zhuǎn)直流效率(η)定義如下:
式中:Vdc是電路輸出直流電壓值,Rl是負(fù)載電阻,Pin是信號(hào)發(fā)生器輸入的微波功率。測(cè)試與仿真對(duì)比結(jié)果如圖5所示。該電路在頻率為5.8 GHz,輸入功率13 dBm時(shí)效率有最大值78.7%,由于測(cè)試時(shí)輸入功率每間隔1 dB測(cè)試一次電壓值,因此實(shí)測(cè)的曲線沒(méi)有仿真的平滑,但還是基本吻合。可以看到,輸入功率在0~16 dBm的范圍內(nèi),整流效率整體高于55%,有16 dB的功率動(dòng)態(tài)范圍。
根據(jù)該整流電路相對(duì)帶寬有30.05%的這一特點(diǎn),固定最佳效率對(duì)應(yīng)的輸入功率13 dBm,從5.18 GHz到7.01 GHz的駐波范圍內(nèi)測(cè)試其效率,觀察其滿足70%以上效率的帶寬范圍,結(jié)果如圖6所示,在5.25 GHz至6.2 GHz內(nèi),電路的轉(zhuǎn)換效率都能夠滿足,故70%效率以上的相對(duì)帶寬為16.6%。
3 結(jié)論
本文提出了一種匹配電路,結(jié)構(gòu)緊湊,直流濾波枝節(jié)兼顧穩(wěn)定紋波作用的新型微波整流電路。二極管前端串聯(lián)的微帶線抵消二極管在交流回路中的容抗,省去了單枝節(jié)匹配的部分,拓展了帶寬;扇形濾波枝節(jié)的長(zhǎng)度調(diào)節(jié)改善了電壓紋波的平滑度,在保證結(jié)構(gòu)緊湊性和基波諧波抑制的前提下,進(jìn)一步提高了整流效率。實(shí)驗(yàn)結(jié)果表明,在5.8 GHz工作頻率下的最高效率達(dá)到78.7%,大于70%整流效率的功率動(dòng)態(tài)范圍有8 dB,大于70%整流效率的相對(duì)帶寬達(dá)到16.6%。
參考文獻(xiàn)
[1] BROWN W C.The history of power transmission by radio waves[J].IEEE Transactions on Microwave Theory and Techniques,1984,32(9):1230-1242.
[2] SHINOHARA N.Power without wires[J].IEEE Microwave Magazine,2011,12(7):S64-S73.
[3] REN Y J,CHANG K.5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission[J].IEEE Transactions on Microwave Theory and Techniques,2006,54(4):1495-1502.
[4] GUO J,ZHU X.An improved analytical model for RF-DC conversion efficiency in microwave rectifiers[C].2012 IEEE MTT-S International Microwave Symposium Digest.2012:1-3.
[5] YOO T W,CHANG K.Theoretical and experimental development of 10 and 35 GHz rectennas[J].IEEE Transactions on Microwave Theory and Techniques,1992,40(6):1259-1266.
[6] PARK J Y,HAN S M,ITOH.A rectenna design with har-monic-rejecting circular-sector antenna[J].IEEE Antennas and Wireless Propagation Letters,2004,3(1):52-54.
[7] HEIKKINEN J,KIVIKOSKI M.A novel dual-frequency circularly polarized rectenna[J].IEEE Antennas and Wireless Propagation Letters,2003,2(1):330-333.
[8] TAKHEDMIT H,CIRIO L,MERABET B,et al.Efficient 2.45 GHz rectenna design including harmonic rejecting rectifier device[J].Electronics Letters,2010,46(12):811.
[9] LOU X,YANG G M.A dual linearly polarized rectenna using defected ground structure for wireless power transmission[J].IEEE Microwave and Wireless Components Letters,2018,28(9):828-830.
[10] WU P,ZHANG L,LIU C,et al.A C-band microwave rectifier based on harmonic termination and with input filter removed[C].Wireless Power Transfer Conference.IEEE,2017.
[11] LIU C,TAN F,ZHANG H,et al.A novel single-diode microwave rectifier with a series band-stop structure[J].IEEE Transactions on Microwave Theory Techniques,2017,65(99):1-7.
[12] GUO J,ZHANG H,ZHU X.Theoretical analysis of RF-DC conversion efficiency for class-F rectifiers[J].IEEE Transactions on Microwave Theory and Techniques,2014,62(4):977-985.
[13] 區(qū)俊輝,吳宙真,安德烈·安德烈尼克,等.基于ADS獲取肖特基二極管阻抗的迭代方法[J].微波學(xué)報(bào),2017(4):74-79.
作者信息:
蔡皓天,陳 星
(四川大學(xué) 電子信息學(xué)院,四川 成都610065)