文獻(xiàn)標(biāo)識(shí)碼: A
DOI:10.16157/j.issn.0258-7998.181410
中文引用格式: 孟嘉慧,趙旦峰,張良. 基于迭代編碼算法的混合構(gòu)造算法[J].電子技術(shù)應(yīng)用,2018,44(9):12-16.
英文引用格式: Meng Jiahui,Zhao Danfeng,Zhang Liang. Hybrid of check matrix construction algorithm based on iteration coding algorithm[J]. Application of Electronic Technique,2018,44(9):12-16.
0 引言
隨著移動(dòng)互聯(lián)網(wǎng)和物聯(lián)網(wǎng)的不斷發(fā)展,第五代移動(dòng)通信(Fifth-Generation Mobile Communication Technology,5G)面臨移動(dòng)通信爆發(fā)式增長(zhǎng)[1-2]。5G技術(shù)不僅需要大幅度提升頻譜利用效率,而且需要具備支持海量設(shè)備連接的能力[3-6]。由于低密度奇偶校驗(yàn)(Low Density Parity Check,LDPC)碼具有高可靠性、快速收斂性及較強(qiáng)抗突發(fā)錯(cuò)誤能力[7-8],可以提高系統(tǒng)有效性[9-10],使得3GPP RAN1會(huì)議在2016年確定在5G移動(dòng)通信中使用LDPC碼作為移動(dòng)帶寬eMBB業(yè)務(wù)數(shù)據(jù)的長(zhǎng)碼塊編碼方案。
本文對(duì)2004年由王鵬提出的LDPC碼迭代編碼算法[11]進(jìn)行改進(jìn),轉(zhuǎn)變?yōu)檫m用于多元LDPC碼的編碼算法,稱(chēng)為多元迭代編碼算法;2005年,Hu Xiaoyu提出了漸進(jìn)邊增長(zhǎng)(Progressive Edge Growth,PEG)構(gòu)造算法[12],該算法譯碼性能好,但編碼復(fù)雜度較高。本文針對(duì)PEG算法具有高編碼復(fù)雜度這一缺點(diǎn),提出改進(jìn)的PEG算法,即irPEG算法;結(jié)構(gòu)化構(gòu)造算法,即QC-LDPC構(gòu)造算法[13],該算法復(fù)雜,譯碼性能差于隨機(jī)構(gòu)造算法,但復(fù)雜度大幅度下降,硬件實(shí)現(xiàn)性強(qiáng)。本文提出一種改進(jìn)的QC-LDPC算法,使校驗(yàn)矩陣具有下三角結(jié)構(gòu),降低復(fù)雜度,加快收斂速度,構(gòu)造出無(wú)短環(huán)的校驗(yàn)矩陣。然后,從編碼復(fù)雜度和糾錯(cuò)性能兩方面考慮,基于多元迭代編碼算法,提出混合構(gòu)造算法,即HC構(gòu)造算法,將隨機(jī)構(gòu)造和結(jié)構(gòu)化構(gòu)造算法結(jié)合,irPEG算法構(gòu)造基矩陣,改進(jìn)的QC-LDPC算法生成循環(huán)移位矩陣和有限域系數(shù)矩陣,消除短環(huán)影響,設(shè)置校驗(yàn)矩陣個(gè)數(shù),從中選取最優(yōu)校驗(yàn)矩陣。該算法既具有隨機(jī)構(gòu)造的隨機(jī)性,又保持結(jié)構(gòu)化構(gòu)造的低復(fù)雜度,降低結(jié)構(gòu)化構(gòu)造對(duì)誤碼性能帶來(lái)的損失,是比較折中的算法。
1 多元迭代編碼算法
在圖1中對(duì)角線上的元素全部為GF(q)域上的非“0”元素,并且剩余的非“0”元素全部對(duì)應(yīng)于對(duì)角線左邊。若構(gòu)造出的多元LDPC校驗(yàn)矩陣具有圖1的結(jié)構(gòu),則在編碼過(guò)程中可直接采用迭代編碼算法編碼。
其中,l∈[0,n-k-1],hi,j表示校驗(yàn)矩陣H中第i行j列上的元素,且k=n-m。由式(1)知,多元迭代編碼算法過(guò)程為利用校驗(yàn)矩陣H中各行約束關(guān)系,采用后項(xiàng)迭代算法,逐次計(jì)算每個(gè)校驗(yàn)位符號(hào)值。
對(duì)迭代編碼算法改進(jìn),將二元迭代編碼時(shí)采用的與(AND)和異或(XOR)運(yùn)算,改進(jìn)為GF(q)域上乘法和加法運(yùn)算。同時(shí)多元迭代編碼算法的運(yùn)算過(guò)程中引入了GF(q)域上除法運(yùn)算。對(duì)運(yùn)算量簡(jiǎn)化,將對(duì)角線上元素設(shè)置為1,式(1)改為式(2)。
2 混合構(gòu)造算法
2.1 irPEG構(gòu)造算法
針對(duì)PEG算法具有較高編碼復(fù)雜度的缺點(diǎn),提出一種具有下三角結(jié)構(gòu)非規(guī)則的PEG算法,即irPEG算法。該算法從編碼方案、構(gòu)造校驗(yàn)矩陣方面改進(jìn),以降低編碼復(fù)雜度,提升糾錯(cuò)性能。具體步驟如下:
(1)確定基矩陣中各參數(shù)
行列數(shù)、變量節(jié)點(diǎn)度分布序列,并且初始化基矩陣的信息,包括與變量節(jié)點(diǎn)相互連接的校驗(yàn)節(jié)點(diǎn)的集合以及它的補(bǔ)集。
(2)構(gòu)造基矩陣對(duì)角線右側(cè)下三角部分
首先采用后項(xiàng)迭代算法從最后一列變量節(jié)點(diǎn)構(gòu)造,根據(jù)變量節(jié)點(diǎn)度分布[14]向前連接校驗(yàn)節(jié)點(diǎn)。每列中第一個(gè)非“0”元素位置必須與對(duì)角線上校驗(yàn)節(jié)點(diǎn)連接,其余非“0”元素需添加在對(duì)角線左側(cè)。尋找所有與該變量節(jié)點(diǎn)連接的校驗(yàn)節(jié)點(diǎn)集合,從中篩選度數(shù)最小的校驗(yàn)節(jié)點(diǎn)集合。若該集合含有多元素,則從中刪除構(gòu)成短環(huán)的校驗(yàn)節(jié)點(diǎn),隨機(jī)連接剩余某校驗(yàn)節(jié)點(diǎn),若只有一個(gè)元素,則直接連接該校驗(yàn)節(jié)點(diǎn)。
(3)構(gòu)造基矩陣的前n-m列
從第n-m個(gè)變量節(jié)點(diǎn)依次向前構(gòu)造。根據(jù)初始化變量節(jié)點(diǎn)度分布序列選擇度數(shù)最小的校驗(yàn)節(jié)點(diǎn),保證每行行重相比于平均行重相差不大。刪除構(gòu)成短環(huán)的校驗(yàn)節(jié)點(diǎn)后,從剩余校驗(yàn)節(jié)點(diǎn)中隨機(jī)連接。
由于構(gòu)造出的矩陣具有下三角結(jié)構(gòu),構(gòu)造時(shí)在滿(mǎn)足式(4)度分布的基礎(chǔ)上,將矩陣最后一列列重設(shè)置為1,校驗(yàn)部分對(duì)角線上元素均為1,下三角部分均為0元素。由此可見(jiàn),可以利用式(2)直接采用后多元迭代編碼算法進(jìn)行編碼。
2.2 混合構(gòu)造算法
雖然irPEG算法結(jié)合多元迭代編碼算法可大大降低編碼復(fù)雜度,但更適用于中短碼硬件實(shí)現(xiàn),對(duì)于長(zhǎng)碼來(lái)說(shuō),硬件實(shí)現(xiàn)復(fù)雜度依然較高。此時(shí)犧牲多元LDPC碼一定糾錯(cuò)性能,在改進(jìn)的QC-LDPC算法的基礎(chǔ)上使其具有下三角結(jié)構(gòu),同時(shí)采用irPEG算法構(gòu)造基矩陣WJ×L,提高多元LDPC碼隨機(jī)性,降低結(jié)構(gòu)化構(gòu)造對(duì)糾錯(cuò)性能帶來(lái)的損失。將改進(jìn)的QC-LDPC構(gòu)造算法與irPEG算法結(jié)合,稱(chēng)為混合構(gòu)造算法,即HC構(gòu)造算法。HC構(gòu)造算法步驟如下:
(1)irPEG算法構(gòu)造基矩陣WJ×L。
給定多元LDPC碼度分布,根據(jù)irPEG算法構(gòu)造出具有下三角結(jié)構(gòu)二元基矩陣,大小為J×L。
(2)確定有限域元素系數(shù)矩陣GcJ×L,根據(jù)基矩陣非“0”元素位置,在(0,q-1)間隨機(jī)選擇gcj,l值。
(3)基矩陣WJ×L確定循環(huán)移位系數(shù)矩陣SJ×L。
將循環(huán)移位系數(shù)矩陣SJ×L對(duì)角線上系數(shù)設(shè)為0,隨機(jī)選擇移位系數(shù)sj,l,通過(guò)WJ×L結(jié)合避免長(zhǎng)度為2i的充分必要條件,如式(5)所示,確定移位系數(shù)矩陣SJ×L中移位系數(shù)sj,l。
其中,0表示p×p維的零矩陣,P表示p×p維的單位陣,碼長(zhǎng)為n=p×L,碼率為r=(1-J/L)。HC構(gòu)造算法的流程圖如圖2所示。
3 編碼復(fù)雜度分析
PEG算法、irPEG算法、HC算法的編碼復(fù)雜度如表1所示。其中,w是生成矩陣的平均列重,n是碼長(zhǎng),k是信息位長(zhǎng)。
在存儲(chǔ)復(fù)雜度方面,HC算法構(gòu)造的LDPC碼存儲(chǔ)矩陣時(shí)存儲(chǔ)一個(gè)p×p維目標(biāo)方陣P、一個(gè)J×L維多元系數(shù)矩陣GcJ×L及一個(gè)J×L循環(huán)移位系數(shù)矩陣SJ×L。irPEG算法構(gòu)造同樣大小校驗(yàn)矩陣,存儲(chǔ)一個(gè)p×J×p×L大小的校驗(yàn)矩陣??梢?jiàn),HC算法與irPEG算法相比具有更簡(jiǎn)單的矩陣存儲(chǔ)結(jié)構(gòu)。
在編碼復(fù)雜度方面,PEG算法采用高斯消去編碼算法,irPEG算法和HC算法采用多元迭代編碼算法。高斯消去編碼復(fù)雜度包含預(yù)處理,運(yùn)算復(fù)雜度為o(n3),編碼復(fù)雜度為o(n2),整個(gè)編碼過(guò)程需wn次乘法,(w-1)n次加法。多元迭代編碼算法整個(gè)編碼過(guò)程用到(w-1)(n-k)次加法,w(n-k)次乘法。
irPEG算法和HC算法能直接構(gòu)造出下三角校驗(yàn)矩陣,避免了校驗(yàn)矩陣預(yù)處理的同時(shí)保證了校驗(yàn)矩陣的稀疏性。因此,w相對(duì)于n可以看成非常小的常數(shù),實(shí)現(xiàn)多元LDPC碼的線性復(fù)雜度編碼,與傳統(tǒng)的構(gòu)造算法相比,大幅度地降低了編碼的復(fù)雜度。
4 仿真結(jié)果及分析
仿真參數(shù)設(shè)置:度分布服從式(4)的多元LDPC碼,矩陣通過(guò)PEG算法和irPEG算法生成,在十六進(jìn)制1/2碼率(Code1)和3/4碼率(Code2)下進(jìn)行仿真,Code1時(shí),信息位長(zhǎng)為512 bit;Code2時(shí),信息位長(zhǎng)為176 bit。譯碼采用Mixed Log-FFT-BP譯碼算法[15],迭代次數(shù)25,BPSK調(diào)制,AWGN信道。
圖3和圖4分別為Code1和Code2時(shí)不同碼率下的糾錯(cuò)性能。由圖3和圖4可知,irPEG算法與PEG算法誤碼率相比,性能相差不大,表明irPEG算法構(gòu)造具有下三角結(jié)構(gòu)的多元LDPC碼在大幅度降低硬件實(shí)現(xiàn)復(fù)雜度的同時(shí),具有較強(qiáng)的糾錯(cuò)能力。
對(duì)Code1和Code2譯碼時(shí)間進(jìn)行測(cè)量,保持仿真環(huán)境一致性,如表2和表3所示。由表2可知,irPEG算法時(shí)間明顯比PEG算法少,當(dāng)誤比特?cái)?shù)較少時(shí),時(shí)間節(jié)省量少于50%,隨著誤比特?cái)?shù)增加,時(shí)間節(jié)省量穩(wěn)定在50%,因此,irPEG算法耗費(fèi)時(shí)間僅為PEG算法50%。Code2在信噪比為4 dB時(shí)的仿真測(cè)試結(jié)果如表3所示,同樣表明譯碼所需時(shí)間減少一半。
參數(shù)設(shè)置如下:碼率1/2、2/3、3/4、4/5、6/7,矩陣通過(guò)PEG和HC生成,十六進(jìn)制(Code3)下仿真,1/2碼率時(shí),基矩陣16列,目標(biāo)矩陣P為24×24單位陣;2/3碼率時(shí),基矩陣18列,P為16×16單位陣;3/4碼率時(shí),基矩陣16列,P為16×16單位陣;4/5碼率時(shí),基矩陣20列,P為12×12單位陣;6/7碼率時(shí),基矩陣14列,P為16×16單位陣,固定信息位長(zhǎng)768 bit。圖5為Code3情況時(shí),PEG算法與HC算法在不同碼率下的誤比特率性能。
由圖5可知,HC算法與PEG算法構(gòu)造的多元LDPC碼在低信噪比時(shí)沒(méi)有明顯差別;在高信噪比下HC算法性能略差于PEG算法構(gòu)造的多元LDPC碼,因此兩種算法具有一致的編碼增益。
5 結(jié)論
本文提出基于多元LDPC碼迭代編碼算法的混合校驗(yàn)矩陣構(gòu)造算法,首先對(duì)迭代編碼算法改進(jìn),使其適用于多元LDPC碼;然后采用后項(xiàng)迭代法使PEG算法具有下三角結(jié)構(gòu),并將其作為混合構(gòu)造算法基矩陣;最后采用改進(jìn)后具有下三角的QC-LDPC碼算法生成循環(huán)移位矩陣和有限域系數(shù)矩陣,設(shè)置校驗(yàn)矩陣的個(gè)數(shù),從中選取最優(yōu)的校驗(yàn)矩陣,該校驗(yàn)矩陣消除了短環(huán)影響,形成混合構(gòu)造算法。仿真結(jié)果表明,本文提出的算法可以更好地適用于5G移動(dòng)通信系統(tǒng)且滿(mǎn)足譯碼算法的需求,對(duì)于高速通信設(shè)備來(lái)說(shuō)是一種很好的候選校驗(yàn)矩陣構(gòu)造算法。
參考文獻(xiàn)
[1] TANG B,YANG S H.An LDPC approach for chunked network codes[J].IEEE-ACM Transactions on Networking,2018,26(1):605-617.
[2] MENG J H,ZHAO D F,TIAN H,et al.Sum of the Magnitude for hard decision decoding algorithm based on loop update detection[J].Sensors,2018,18(1):236.
[3] ZHANG C,HUANG Y H,SHEIKH F.Advanced baseband processing algorithm[J].Circuits, and Implementations for 5G Communication.IEEE Journal on Emerging and Selected Topics in Circuits and Systems,2017,7(4):477-490.
[4] DJORDJEVIC I B.Multidimensional OAM-Based secure high-speed wireless communications[J].IEEE Access,2017,5(4):16416-16428.
[5] MALANDRINO F,CHIASSERINI C F,KIRKPATRICK C.Cellular network traces towards 5G:using,analysis and generation[J].IEEE Transactions on Mobile Computing,2018,17(3):529-542.
[6] SOTELO M,MARCO A,MAESTRE V,et al.Reasoning and knowledge acquisition framework for 5G network analytics[J].Sensors,2017,17(10):2405.
[7] YU Y,CHEN W.Design of low complexity non-binary LDPC codes with an approximated performance-complexity tradeoff[J].IEEE Communications Letters,2012,16(4):514-517.
[8] SONG L Y,HUANG Q,WANG Z L.Two enhanced reliability-based decoding algorithm for nonbinary LDPC codes[J].IEEE Transactions on Communications,2016,64(2):479-489.
[9] ZHAO S C,MA X.Construction of high-performance array-based non-binary LDPC codes with moderate rates[J].IEEE Communications Letters,2016,20(1):13-16.
[10] XIA T,WU H C.Blind identification of nonbianry LDPC codes using average LLR of syndrome a posteriori proba-bility[J].IEEE Communications Letters,2013,17(7):1301-1304.
[11] 王鵬,王新梅.LDPC碼的快速編碼研究[J].西安電子科技大學(xué)學(xué)報(bào),2004,6(31):934-938.
[12] Hu Xiaoyu,EVANGELOS E,DIETER M A.Progressive edge growth tanner graphs[J].IEEE Transactions on Information Theory,2005,51(1):995-1001.
[13] DRAGOI V,KALACHI H T.Cryptanalysis of a public key encryption scheme based on QC-LDPC and QC-MDPC codes[J].IEEE Transactions on Information Theory,2018,22(2):264-267.
[14] TONG N N.Research of encode and decode algorithm optimization and application for non-binary LDPC codes[D].Harbi:Harbin Engineering University,2014.
[15] SONG H,CRUZ J R.Reduced-complexity decoding of Qary LDPC codes for magnetic recording[J].IEEE Transactions on Magnetics,2003,39(2):1081-1087.
作者信息:
孟嘉慧,趙旦峰,張 良
(哈爾濱工程大學(xué) 信息與通信工程學(xué)院,黑龍江 哈爾濱150001)