《電子技術(shù)應(yīng)用》
您所在的位置:首頁 > 嵌入式技術(shù) > 設(shè)計應(yīng)用 > 基于LFOA算法的相關(guān)向量機(jī)核參數(shù)優(yōu)化
基于LFOA算法的相關(guān)向量機(jī)核參數(shù)優(yōu)化
2017年電子技術(shù)應(yīng)用第2期
呂 巖,房立清,趙玉龍,張前圖
軍械工程學(xué)院 火炮工程系,河北 石家莊050003
摘要: 相關(guān)向量機(jī)(RVM)核函數(shù)參數(shù)對其性能有較大影響,為了提高相關(guān)向量機(jī)的分類能力,提出了一種基于具有Levy飛行特征的雙子群果蠅算法(LFOA)的RVM核參數(shù)優(yōu)化方法。在適應(yīng)度函數(shù)的評判下,果蠅種群經(jīng)過多次Levy飛行和迭代對指定范圍內(nèi)的核參數(shù)進(jìn)行全局搜索。4組UCI標(biāo)準(zhǔn)數(shù)據(jù)集的MATLAB仿真實驗測試結(jié)果表明,所提出的方法有效、可靠,能夠提升RVM的分類能力,相比于其他算法具備更高的尋優(yōu)精度和穩(wěn)定性。
中圖分類號: TN02
文獻(xiàn)標(biāo)識碼: A
DOI:10.16157/j.issn.0258-7998.2017.02.030
中文引用格式: 呂巖,房立清,趙玉龍,等. 基于LFOA算法的相關(guān)向量機(jī)核參數(shù)優(yōu)化[J].電子技術(shù)應(yīng)用,2017,43(2):124-127.
英文引用格式: Lv Yan,F(xiàn)ang Liqing,Zhao Yulong,et al. Parameters optimization research of relevance vector machine based on LFOA[J].Application of Electronic Technique,2017,43(2):124-127.
Parameters optimization research of relevance vector machine based on LFOA
Lv Yan,F(xiàn)ang Liqing,Zhao Yulong,Zhang Qiantu
Department of Artillery Engineering, Ordnance Engineering College,Sijiazhuang 050003,China
Abstract: The parameter of kernel function influences the integrative performance of relevance vector machine(RVM) gravely. In order to improve the classify performance of relevance vector machine, a method based on LFOA was proposed to optimizing the RVM kernel parameters. By fitness function evaluation, the fruit fly group began a global search for the kernel parameters in the specified range through several Levy flight and iteration. The effectiveness of the algorithm is verified with MATLAB simulation experiment through four UCI standard database set and the method can improve the classification ability of RVM. Comparing with other algorithms, the algorithm has better testing precision and stability.
Key words : RVM;parameters optimization;fruit fly optimization algorithm;Levy flight

0 引言

    相關(guān)向量機(jī)(Relevance Vector Machine,RVM)[1]是建立在支持向量機(jī)(Support Vector Machine,SVM)基礎(chǔ)上的一種學(xué)習(xí)方法,依靠稀疏貝葉斯統(tǒng)計理論建立訓(xùn)練模型。RVM與SVM相比,函數(shù)形式相似,但RVM的核函數(shù)不需要滿足Mercer條件以及能提供概率式輸出使它更具優(yōu)勢[2]。近年來RVM在回歸估計、模式識別及工程領(lǐng)域方面[3]得到了較為廣泛的應(yīng)用,但仍存在最優(yōu)核參數(shù)不易確定的問題,所以部分學(xué)者將智能優(yōu)化算法應(yīng)用到RVM核參數(shù)尋優(yōu)中[4],取得了一定的成效。

    果蠅算法[5](Fruit fly Optimization Algorithm,F(xiàn)OA)是由PAN W T根據(jù)果蠅覓食的行為提出的一種智能優(yōu)化算法。雖然該算法被廣泛應(yīng)用到各個領(lǐng)域[6],但在實際應(yīng)用過程中,也存在陷入局部最優(yōu)解的情況,文獻(xiàn)[7]提出了具有Levy飛行特征的雙子群果蠅優(yōu)化算法(LFOA),有效地解決了FOA陷入局部最優(yōu)的問題,提高了算法的性能。為了提高RVM分類器的性能,本文提出了一種基于LFOA算法的RVM核函數(shù)參數(shù)優(yōu)化方法,并通過UCI標(biāo)準(zhǔn)數(shù)據(jù)庫的仿真實驗,驗證了方法的有效性和可靠性。

1 相關(guān)向量機(jī)

1.1 模型描述

jsj3-gs1.gif

    假設(shè)每個樣本獨立分布,p(t|x)采用Bernoulli分布,可得預(yù)測結(jié)果t的后驗概率的似然函數(shù)為:

jsj3-gs2.gif

    根據(jù)概率預(yù)測公式,新的輸入向量x?鄢所對應(yīng)的目標(biāo)向量t?鄢求得的條件概率為:

    jsj3-gs3.gif

    根據(jù)稀疏Bayes理論,給權(quán)值向量w分配獨立的零均值Gauss先驗分布:

    jsj3-gs4.gif

    經(jīng)過多次迭代后可發(fā)現(xiàn)大部分權(quán)值都變得很小,只有很少一部分權(quán)值非零,根據(jù)式(1),只有非零權(quán)值對應(yīng)的訓(xùn)練向量對目標(biāo)值起作用,稱為相關(guān)向量(RVs),則RVM模型可重新表示為:

    jsj3-gs5.gif

1.2 RVM多分類

jsj3-gs6-8.gif

    最后,通過式(8)累加所有分類器的概率輸出,并采用“最大概率贏[9]”的策略將xtest判定為累加后驗概率最大的類別。

1.3 核參數(shù)對RVM分類性能的影響

    相關(guān)向量機(jī)的核函數(shù)可將低維數(shù)據(jù)樣本映射到高維特征空間,從而實現(xiàn)樣本的線性可分,所以其參數(shù)的設(shè)置對RVM的分類性能有著極其重要的影響。研究以比較常用、非線性映射能力較強(qiáng)的徑向基核函數(shù)[10](RBF Kernel)為例,利用UCI數(shù)據(jù)庫中Sonar分類數(shù)據(jù)(共208個樣本)進(jìn)行試驗,將Sonar數(shù)據(jù)集中的全部數(shù)據(jù)作為訓(xùn)練樣本對RVM分類模型進(jìn)行訓(xùn)練,同時也將全部數(shù)據(jù)作為測試樣本輸入已訓(xùn)練的RVM模型中進(jìn)行學(xué)習(xí)能力測試。核參數(shù)值與相關(guān)向量(RVs)和訓(xùn)練時間的關(guān)系如表1所示。

jsj3-b1.gif

    根據(jù)表1可知,隨著核函數(shù)參數(shù)逐漸增大,相關(guān)向量的數(shù)量呈現(xiàn)逐漸下降的趨勢,不同核參數(shù)所對應(yīng)的訓(xùn)練時間不同,為進(jìn)一步說明核函數(shù)參數(shù)對RVM性能的影響,圖1給出了分類準(zhǔn)確率隨著核參數(shù)的變化趨勢。

jsj3-t1.gif

    由圖1和表1可知,改變核函數(shù)參數(shù)實際上是改變映射函數(shù)關(guān)系,進(jìn)而改變數(shù)據(jù)樣本映射到高維特征空間的可區(qū)分程度,所以核參數(shù)的選取對RVM性能有較大程度的影響,同時也只有選擇適當(dāng)?shù)暮藚?shù),RVM的學(xué)習(xí)能力和泛化能力才能得到提升。

2 LFOA-RVM核參數(shù)優(yōu)化方法

2.1 LFOA算法

    LFOA算法是將Levy飛行特征和果蠅算法相結(jié)合,利用Levy飛行的高度隨機(jī)性使果蠅種群容易跳出局部最優(yōu),LFOA算法的具體步驟參見文獻(xiàn)[7]。

    LFOA算法在尋優(yōu)過程中,分別計算果蠅個體與當(dāng)代最優(yōu)個體和最差個體的歐式距離Distbest和Distworst,若Distbest<Distworst,則將果蠅個體劃分到較優(yōu)子群,否則劃分為較差子群,迭代過程中,兩個子群的果蠅個體數(shù)量是動態(tài)變化的。較優(yōu)子群圍繞最優(yōu)個體按式(9)進(jìn)行Levy飛行:

jsj3-gs9-10.gif

2.2 LFOA-RVM優(yōu)化核參數(shù)流程

    基于LFOA算法優(yōu)化RVM核參數(shù)的流程如圖2所示,具體步驟如下:

jsj3-t2.gif

    (1)將數(shù)據(jù)集分為訓(xùn)練樣本和測試樣本,訓(xùn)練樣本用于RVM核參數(shù)選擇和建立RVM分類模型,測試樣本則用于檢驗RVM分類器性能;

    (2)初始化LFOA算法種群規(guī)模、迭代次數(shù)、果蠅個體起始位置和搜索距離以及Levy飛行步進(jìn)長度等參數(shù);

    (3)對訓(xùn)練樣本采用5折交叉驗證[11](5-fold cross validation),將交叉驗證平均準(zhǔn)確率作為適應(yīng)度函數(shù),選擇最大準(zhǔn)確率對應(yīng)的核參數(shù)值作為RVM分類模型參數(shù)的設(shè)定值;

    (4)根據(jù)果蠅個體的適應(yīng)度,按照與最優(yōu)個體和最差個體間的歐氏距離大小將果蠅分類,并按式(9)和式(10)進(jìn)行位置更新;

    (5)計算新位置果蠅的適應(yīng)度,按照規(guī)則更新全局信息;

    (6)重復(fù)步驟(4)和(5),最終輸出最優(yōu)核參數(shù)值。

3 仿真實驗 

3.1 數(shù)據(jù)源與參數(shù)設(shè)置

    為了驗證LFOA-RVM的有效性,從UCI機(jī)器學(xué)習(xí)標(biāo)準(zhǔn)數(shù)據(jù)庫中選取了4個數(shù)據(jù)集進(jìn)行仿真實驗。算法采用MATLAB R2011b實現(xiàn),RVM工具箱為SB2_Release_200[12],實驗中使用的UCI數(shù)據(jù)集如表2所示。

jsj3-b2.gif

    為了便于對比,分別利用LFOA、FOA、遺傳算法(GA)和粒子群算法(PSO)同時對RVM的核參數(shù)進(jìn)行尋優(yōu)。將全部算法的種群規(guī)模設(shè)置為20,最大迭代次數(shù)為100,g的搜索范圍設(shè)置為0~500;在LFOA算法中步進(jìn)長度設(shè)置為1.5;GA算法中,交叉概率pc=0.7,變異概率pm=0.1;PSO算法中局部搜索參數(shù)c1=1.5,全局搜索參數(shù)c2=1.7。

3.2 結(jié)果分析

    利用表2中的4組數(shù)據(jù)按照2.2節(jié)所述的優(yōu)化流程對LFOA-RVM性能進(jìn)行測試,尋優(yōu)迭代過程中的適應(yīng)度曲線如圖3所示。

jsj3-t3.gif

    根據(jù)圖3可知,F(xiàn)OA、GA和PSO算法在尋優(yōu)時都不同程度的出現(xiàn)了陷入局部最優(yōu)解而無法跳出的情況,與以上3種算法相比,LFOA由于Levy飛行高度的隨機(jī)性從而更容易跳出局部最優(yōu),并且適應(yīng)度更高,尋優(yōu)速度更快。

    4組數(shù)據(jù)集測試樣本的測試結(jié)果如表3~6所示。在表3~6中,平均準(zhǔn)確率為使用數(shù)據(jù)集進(jìn)行5次實驗后得到的平均測試準(zhǔn)確率;最高準(zhǔn)確率為實驗過程中得到的最高測試準(zhǔn)確率;最優(yōu)核參數(shù)為達(dá)到最高測試準(zhǔn)確率時RVM分類模型核函數(shù)參數(shù)的值。

jsj3-b3.gif

jsj3-b4.gif

jsj3-b5.gif

jsj3-b6.gif

    根據(jù)測試結(jié)果可知,LFOA-RVM不論是解決二分類問題或者是多分類問題,都可以達(dá)到較高的測試準(zhǔn)確率,并且4組UCI數(shù)據(jù)集的最優(yōu)核參數(shù)值跨度較大,表明了LFOA算法具備較強(qiáng)的全局搜索能力,驗證了利用LFOA算法進(jìn)行RVM核參數(shù)尋優(yōu)的有效性。為了便于比較各算法的尋優(yōu)穩(wěn)定性,計算出多次實驗的測試結(jié)果方差,如表7所示。

jsj3-b7.gif

    由表7可知,Ionosphere、Wine和Segment數(shù)據(jù)集進(jìn)行多次測試,LFOA算法所得的方差小于其他幾種算法,Vehicle數(shù)據(jù)集中LFOA測試結(jié)果的方差雖略大于FOA,但明顯小于其他兩種算法,表明了LFOA-RVM測試結(jié)果的波動程度較小,驗證了該方法具有較高的尋優(yōu)穩(wěn)定性;LFOA結(jié)合了FOA算法局部尋優(yōu)精度高與Levy飛行容易跳出局部最優(yōu)值的優(yōu)勢,提高了全局搜索能力,所以與FOA、GA和PSO 3種算法相比,LFOA算法搜索精度更高,性能更穩(wěn)定。綜合以上分析可知,LFOA算法可較精確地搜索RVM的最優(yōu)核參數(shù),并能達(dá)到較高的測試準(zhǔn)確率,較其他幾種算法而言,具備一定優(yōu)勢。

4 結(jié)論

    RVM核函數(shù)參數(shù)的選取對其分類性能有著顯著的影響。針對這一問題,本文采用LFOA算法對RVM核參數(shù)進(jìn)行尋優(yōu),通過幾個典型的UCI數(shù)據(jù)集進(jìn)行測試,得出該算法可較精確地搜索到RVM的最優(yōu)核參數(shù),具備較強(qiáng)的局部尋優(yōu)精度和全局搜索能力,有效地提高了RVM分類模型的性能。相比于傳統(tǒng)的果蠅算法、遺傳算法和粒子群算法具有更高的尋優(yōu)精度和穩(wěn)定性,為選取最優(yōu)RVM核函數(shù)參數(shù)提供了一種新方法、新途徑。

參考文獻(xiàn)

[1] TIPPING M E.Sparse Bayesian learning and the relevance vector machine[J].Journal of Machine Learning Research,2001,1(3):211-244.

[2] 范庚,馬登武,張繼軍,等.基于決策樹和相關(guān)向量機(jī)的智能故障診斷方法[J].計算機(jī)工程與應(yīng)用,2013,49(14):267-270.

[3] 張旭峰,楊豐瑞,鄭建宏.基于RVM的可重用性SoC測試平臺設(shè)計[J].電子技術(shù)應(yīng)用,2006,32(5):82-84.

[4] 陳景柱.布谷鳥優(yōu)化混合核相關(guān)向量機(jī)的網(wǎng)絡(luò)流量預(yù)測[J].計算機(jī)與現(xiàn)代化,2015(5):94-97.

[5] PAN W T.A new fruit fly optimization algorithm:Taking the financial distress model as an example[J].Knowledge-Based Systems,2012,26(Complete):69-74.

[6] 劉翠玲,張路路,王進(jìn)旗,等.基于FOA-GRNN油井計量原油含水率的預(yù)測[J].計算機(jī)仿真,2012,29(11):243-246.

[7] 張前圖,房立清,趙玉龍.具有Levy飛行特征的雙子群果蠅優(yōu)化算法[J].計算機(jī)應(yīng)用,2015,35(5):1348-1352.

[8] 任學(xué)平,龐震,辛向志,等.基于小波包最優(yōu)熵與RVM的滾動軸承故障診斷方法[J].軸承,2014(11):48-53.

[9] 周勇,何創(chuàng)新.基于獨立特征選擇與相關(guān)向量機(jī)的變載荷軸承故障診斷[J].振動與沖擊,2012,31(3):157-161.

[10] 姚全珠,蔡婕.基于PSO的LS-SVM特征選擇與參數(shù)優(yōu)化算法[J].計算機(jī)工程與應(yīng)用,2010,46(1):134-136.

[11] 姚暢,陳后金,YANG Y Y,等.基于自適應(yīng)核學(xué)習(xí)相關(guān)向量機(jī)的乳腺X線圖像微鈣化點簇處理方法研究[J].物理學(xué)報,2013,62(8):1-11.

[12] TIPPING M E.An efficient MATLAB implementation of the sparse Bayesian modelling algorithm[CP/OL].(2009-03-12)[2016-05-10].http://www.Relevancevector.com.



作者信息:

呂  巖,房立清,趙玉龍,張前圖

(軍械工程學(xué)院 火炮工程系,河北 石家莊050003)

此內(nèi)容為AET網(wǎng)站原創(chuàng),未經(jīng)授權(quán)禁止轉(zhuǎn)載。