徐華1 ,趙軍2
?。?.寧夏大學 數(shù)學與計算機學院,寧夏 銀川 750000;2.寧夏大學 經(jīng)濟與管理學院,寧夏 銀川 750000)
摘要:提出了一種基于遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡工業(yè)經(jīng)濟運行指標的預測方法,用遺傳算法來優(yōu)化BP神經(jīng)網(wǎng)絡各連接層的權(quán)值和閾值,用訓練好的BP神經(jīng)網(wǎng)絡模型來預測工業(yè)經(jīng)濟運行指標以求得最優(yōu)解。以工業(yè)經(jīng)濟運行指標工業(yè)總產(chǎn)值為例,將該遺傳BP神經(jīng)網(wǎng)絡模型應用到工業(yè)總產(chǎn)值和工業(yè)用電量的預測中,并與BP神經(jīng)網(wǎng)絡預測模型進行了對比。由結(jié)果可知,該模型對工業(yè)經(jīng)濟運行指標趨勢的判斷和預測更加準確,可為宏觀決策提供可靠的依據(jù),促進工業(yè)經(jīng)濟能夠健康可持續(xù)發(fā)展。
關鍵詞:工業(yè)經(jīng)濟;運行指標;遺傳算法;BP神經(jīng)網(wǎng)絡
0引言
近年來,寧夏工業(yè)經(jīng)濟運行情況不斷下滑,同時節(jié)能減排的任務壓力增加。為保持工業(yè)經(jīng)濟能夠平穩(wěn)增長,同時把控工業(yè)經(jīng)濟運行的情況,就需要分析和預測全區(qū)工業(yè)經(jīng)濟運行趨勢,為此需要對核心經(jīng)濟指標做出科學、準確的預測,從而可以反映出經(jīng)濟發(fā)展的走勢,為分析判斷、制定計劃提供參考。目前,對工業(yè)經(jīng)濟指標的預測主要有定性分析、數(shù)量經(jīng)濟學和神經(jīng)網(wǎng)絡等研究方法[12]。在這些預測模型中,定性分析主要依靠經(jīng)濟研究者的經(jīng)驗積累;數(shù)量經(jīng)濟學研究方法主要是建立數(shù)學預測模型,有諸多的限制和假設。目前,BP神經(jīng)網(wǎng)絡預測模型是預測效果相對較好的一種。但該模型有兩個明顯的不足:一是容易陷入局部極小值;二是收斂速度慢[3]。為避免上述問題,本文利用遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡(遺傳BP神經(jīng)網(wǎng)絡)預測模型對工業(yè)經(jīng)濟運行指標做出預測。
遺傳算法(Genetic Algorithm,GA)由美國Michigan大學的J.Holland教授首先提出。遺傳算法通過模擬自然界中的繁殖、交叉和突變現(xiàn)象,按照某一適應度函數(shù)從每一代種群中選擇一組候選染色體,讓其進行交叉和變異以產(chǎn)生新一代種群,反復迭代,在此過程中個體的適應度不斷提高,直到滿足一定的條件[4],是一種針對生物進化過程提出的算法,此算法不僅適應性強而且魯棒性高。其特點主要表現(xiàn)在:(1)演化是概率性的,因此,搜索過程很難達到局部最優(yōu);(2)采用自然進化機制,充分利用適用度函數(shù)提供的信息;(3)易于和局部搜索算法相結(jié)合,進而構(gòu)造更加高效的混合策略搜索算法;(4)演化計算具有并行性 [5]。另外,演化計算具有自適應性,能夠自發(fā)學習環(huán)境特性與規(guī)律?;谶z傳算法的特點和BP神經(jīng)網(wǎng)絡的不足,本文提出了遺傳BP神經(jīng)網(wǎng)絡預測模型對工業(yè)經(jīng)濟運行指標進行預測。該模型首先根據(jù)工業(yè)經(jīng)濟運行指標預測時輸入輸出的參數(shù)個數(shù)來確定BP神經(jīng)網(wǎng)絡的拓撲結(jié)構(gòu),然后用遺傳算法對BP神經(jīng)網(wǎng)絡各層連接的權(quán)值和閾值進行優(yōu)化,將利用遺傳算法得到的最優(yōu)個體的值作為BP神經(jīng)網(wǎng)絡權(quán)值和閾值的初始值,用此初始值初始化BP神經(jīng)網(wǎng)絡模型,之后訓練,以得到最優(yōu)解。用遺傳算法來優(yōu)化BP神經(jīng)網(wǎng)絡模型能有效地解決BP 神經(jīng)網(wǎng)絡易陷入局部極小值、收斂速度慢的問題。
1BP神經(jīng)網(wǎng)絡預測模型
經(jīng)濟分析預測是一門藝術(shù),要準確地判斷經(jīng)濟運行中的各種指標未來的發(fā)展趨勢,才能有效地預測經(jīng)濟的發(fā)展。許多學者對預測模型進行了研究,在目前諸多預測模型中,BP神經(jīng)網(wǎng)絡模型是應用最廣泛的神經(jīng)網(wǎng)絡模型之一[6]。它根據(jù)實際的輸入與輸出數(shù)據(jù)來計算模型的參數(shù),通過誤差反傳算法[7]來持續(xù)調(diào)整BP網(wǎng)絡各層的權(quán)值和閾值,使模型的誤差平方和達到最小。3層BP神經(jīng)網(wǎng)絡的拓撲結(jié)構(gòu)如圖1所示,由輸入層、隱含層和輸出層組成,每個層中包含多個神經(jīng)元。
圖13層BP神經(jīng)網(wǎng)絡拓撲結(jié)構(gòu)在該BP神經(jīng)網(wǎng)絡模型中,設輸入層的節(jié)點數(shù)為n,隱含層的節(jié)點數(shù)為p,輸出層的節(jié)點數(shù)為m。在本文對工業(yè)經(jīng)濟運行指標的預測中取輸出層節(jié)點數(shù)m=1,則BP神經(jīng)網(wǎng)絡完成映射f:Rn→R1,其隱含層各節(jié)點的輸入為:Rj= f1(∑ni = 1wkixi-θj)(j=1,2,…,p),其中wki是輸入層到隱含層的權(quán)值;θj為隱含層節(jié)點的閾值。輸出層節(jié)點的輸入為:C=∑pk=1vjkzj-γ,其中vjk為隱含層到輸出層的權(quán)值;γ為輸出層的閾值。BP神經(jīng)網(wǎng)絡采用Sigmoid轉(zhuǎn)移函數(shù)f(x)=1/(1+e-x),則隱含層節(jié)點的輸出為:Oi=11+exp(-∑ni=1wkixi+θj)(j=1,2,…,p),同理,輸出層節(jié)點的輸出為:
BP 神經(jīng)網(wǎng)絡的連接權(quán)值 wki、vjk和閾值θj、γ可由BP神經(jīng)網(wǎng)絡訓練求得,式(1)即為BP神經(jīng)網(wǎng)絡的預測模型。BP神經(jīng)網(wǎng)絡先將各層的權(quán)值和閾值隨機賦值為[0,1]之間的任意值,然后進行訓練。這樣會使BP神經(jīng)網(wǎng)絡在訓練過程中出現(xiàn)收斂速度慢、很難達到最優(yōu)解的問題。由遺傳算法的特點可知,若采用遺傳算法對BP神經(jīng)網(wǎng)絡模型的初始權(quán)值以及閾值分布進行優(yōu)化,可提高BP神經(jīng)網(wǎng)絡模型的預測精度。
2遺傳BP(GA-BP)神經(jīng)網(wǎng)絡預測模型
工業(yè)經(jīng)濟運行指標BP神經(jīng)網(wǎng)絡預測模型通過神經(jīng)元之間的信息傳遞和誤差逆?zhèn)鞑韺崿F(xiàn)經(jīng)濟指標的預測。BP神經(jīng)網(wǎng)絡采用誤差反傳算法,這種算法實質(zhì)上是一個無約束、非線性和最優(yōu)化的計算過程。當有較大的網(wǎng)絡結(jié)構(gòu)時,這種算法計算時間長,很容易收斂于局部極小值點,從而無法達到最優(yōu)解,影響了BP神經(jīng)網(wǎng)絡解決問題的能力。遺傳算法具有全局搜索能力,能有效地解決局部極小值的問題。于是提出遺傳BP神經(jīng)網(wǎng)絡預測模型,它以歷史數(shù)據(jù)為網(wǎng)絡訓練樣本,最終得到的輸出為綜合預測狀態(tài)值。用遺傳BP神經(jīng)網(wǎng)絡建立寧夏工業(yè)經(jīng)濟運行指標預測模型,可提高在工業(yè)經(jīng)濟運行中經(jīng)濟指標的預測精度,根據(jù)預測的走勢更好地制定相應的法規(guī)和政策以對經(jīng)濟實體進行宏觀調(diào)控。
遺傳算法不依賴于問題的具體領域,直接在解空間進行搜索以求得最優(yōu)解,具有很強的魯棒性。通過遺傳算法能使BP神經(jīng)網(wǎng)絡各連接層的權(quán)值、閾值在預定的進化次數(shù)內(nèi)得到最優(yōu)解,從而提高BP神經(jīng)網(wǎng)絡處理問題的能力。遺傳BP神經(jīng)網(wǎng)絡預測模型的流程圖如圖2所示,其主要步驟有:
(1)選擇編碼方式。在這里編碼的對象是權(quán)值和閾值。因權(quán)值和閾值都是實數(shù),為避免編碼過長和解碼頻繁,故選擇實數(shù)編碼[8]。編碼的長度由圖1中的BP神經(jīng)網(wǎng)絡結(jié)構(gòu)決定,編碼串的順序也按照圖1中從輸入到輸出的順序排列。
?。?)選擇操作。采用賭輪法選擇算子,即個體被選中的概率與適應度函數(shù)成正比。選擇的概率為[9]:pi=fi∑pi=1fi (fi=1fit,i=1,2,…,p),式中,p為種群的規(guī)模。
?。?)交叉操作。由于用實數(shù)編碼方法對對象編碼,所以這里交叉操作的方法也應用實數(shù)交叉法。第 m個基因 φm和第n個基因 φn在 k位的交叉操作為:
φmk=φmk(1-θ)+φnjθ
φnk=φnk(1-θ)+φmkθ
式中,θ是[0,1]間的隨機數(shù)。
?。?)變異操作。選取第i個個體的第l個基因進行變異,則:
式中,φmax為基因φil取值的上界,φmin為基因φil取值的下界;r 為[0,1]間的隨機數(shù);r2為一個隨機數(shù);g為當前迭代次數(shù);Gmax為最大進化代數(shù)。
(5)計算適應度。設網(wǎng)絡訓練輸出值為i,以訓練誤差的平方和作為個體的適應度,則每個個體ti的適應度定義為:fit=∑(i-oi)2(i=1,2,…,p),平均適應度定義為:=∑pi=1fitiP,式中,i為訓練輸出值,oi為訓練輸出期望值,P為種群規(guī)模。
?。?)利用遺傳算法優(yōu)化的權(quán)值和閾值對BP神經(jīng)網(wǎng)絡預測模型進行訓練,得到所求預測問題的最優(yōu)解。
3實驗
根據(jù)經(jīng)濟指標的選取原則即經(jīng)濟指標應具有重要性、靈敏性、及時性和可操作性等[10],以及寧夏自治區(qū)經(jīng)信委提供的寧夏工業(yè)經(jīng)濟運行情況,以工業(yè)經(jīng)濟指標工業(yè)總產(chǎn)值和工業(yè)用電量為例,應用遺傳BP神經(jīng)網(wǎng)絡和BP神經(jīng)網(wǎng)絡預測模型對其預測。通過提供基于數(shù)據(jù)的預測模型來輔助決策,可以提高寧夏地方政府工業(yè)經(jīng)濟運行分析能力,為寧夏地方政府工業(yè)經(jīng)濟運行的科學預測提供輔助決策。表1是寧夏2001~2014年的工業(yè)總產(chǎn)值。
選取2001~2010年工業(yè)總產(chǎn)值的發(fā)展狀況作為訓練樣本,2011~2014年工業(yè)總產(chǎn)值的發(fā)展狀況作為檢驗樣本。分別用BP神經(jīng)網(wǎng)絡預測模型與遺傳BP神經(jīng)網(wǎng)絡預測模型對工業(yè)經(jīng)濟運行指標工業(yè)總產(chǎn)值進行預測,結(jié)果如表2所示。BP和遺傳BP(GABP)神經(jīng)網(wǎng)絡模型的工業(yè)總產(chǎn)值預測如圖3所示。從表2和圖3可以看到,遺傳BP神經(jīng)網(wǎng)絡模型預測結(jié)果更接近于實際值。
表3為寧夏2005~2014年的工業(yè)用電量。選取2005~2011年工業(yè)用電量的發(fā)展狀況作為訓練樣本,2012~2014年工業(yè)用電量的發(fā)展狀況作為檢驗樣本。分別用BP神經(jīng)網(wǎng)絡預測模型與遺傳BP神經(jīng)網(wǎng)絡預測模型對工業(yè)經(jīng)濟運行指標工業(yè)用電量進行預測,結(jié)果如表4所示。BP和遺傳BP(GABP)神經(jīng)網(wǎng)絡模型的工業(yè)用電量預測如圖4所示。從圖中可以直觀地看到,遺傳BP神經(jīng)網(wǎng)絡模型預測結(jié)果更接近于實際值。
4結(jié)論
本文針對在工業(yè)經(jīng)濟運行指標預測中BP神經(jīng)網(wǎng)絡模型存在易陷入局部極小值、收斂速度慢等問題,提出了遺傳BP神經(jīng)網(wǎng)絡預測模型,并與BP神經(jīng)網(wǎng)絡預測模型進行了比較。實驗結(jié)果表明,遺傳算法優(yōu)化的BP神經(jīng)網(wǎng)絡模型的預測結(jié)果更接近于實際值,提高了預測的準確度。實際上工業(yè)經(jīng)濟運行指標是一個非常復雜的問題,很難對其進行準確預測。在寧夏工業(yè)運行數(shù)據(jù)基礎上運用遺傳BP神經(jīng)網(wǎng)絡建立模型,通過持續(xù)學習,提高了寧夏工業(yè)經(jīng)濟運行的預測準確度,有一定的適用性,但仍需根據(jù)實際運行狀況來進行驗證。
參考文獻
?。?] 趙春標. 工業(yè)經(jīng)濟監(jiān)測預測模型的研究與應用[D]. 合肥:合肥工業(yè)大學,2012.
?。?] 朱蓉華. 工業(yè)經(jīng)濟運行監(jiān)測系統(tǒng)的建設研究[J]. 電子政務,2011(4):2125.
?。?] 賀國光,李宇,馬壽峰. 基于數(shù)學模型的短時交通流預測方法探討[J]. 系統(tǒng)工程理論與實踐,2000,20(12):110112.
[4] 唐明. 短時交通流特性及其預測方法研究[D]. 長沙:長沙理工大學,2004.
[5] TANG H,WU E X. MRI brain image segmentation by multiresolution edge detection and region selection[J]. Computerized Medical Imaging and Graphics,2000,24(9):349357.
[6] CHEN H,GRANT MULLER S. Use of sequential learning for shortterm traffic flow forecasting[J].Transportation Research,2001,9(5):319336.
?。?] 李松,羅勇,張銘銳. 遺傳算法優(yōu)化BP神經(jīng)網(wǎng)絡的混沌時間序列預測[J]. 計算機工程與應用,2011,47(29):5255.
?。?] MONTANA D J, DAVIS L. Training feed forward neural networks using neural networks and genetic algorithm[C]. Proc. of International Conference on Computing, Communications and Control Technologies, Austin, USA, 1989: 762767.
[9] 張良均,曹晶,蔣世忠. 神經(jīng)網(wǎng)絡實用教程[M]. 北京:機械工業(yè)出版社,2008.
?。?0] 王敏,周博,李陽. 北京工業(yè)經(jīng)濟運行監(jiān)測預警指標體系的構(gòu)建[C]. 北京市統(tǒng)計學會:北京市第十五次統(tǒng)計科學討論會獲獎論文集,2009:189190.